52 research outputs found

    Extended observables in theories with constraints

    Full text link
    In a classical Hamiltonian theory with second class constraints the phase space functions on the constraint surface are observables. We give general formulas for extended observables, which are expressions representing the observables in the enveloping unconstrained phase space. These expressions satisfy in the unconstrained phase space a Poisson algebra of the same form as the Dirac bracket algebra of the observables on the constraint surface. The general formulas involve new differential operators that differentiate the Dirac bracket. Similar extended observables are also constructed for theories with first class constraints which, however, are gauge dependent. For such theories one may also construct gauge invariant extensions with similar properties. Whenever extended observables exist the theory is expected to allow for a covariant quantization. A mapping procedure is proposed for covariant quantization of theories with second class constraints.Comment: 26 pages, Latexfile,Minor misprints on page 4 are correcte

    Lifting a Weak Poisson Bracket to the Algebra of Forms

    Full text link
    We detail the construction of a weak Poisson bracket over a submanifold of a smooth manifold M with respect to a local foliation of this submanifold. Such a bracket satisfies a weak type Jacobi identity but may be viewed as a usual Poisson bracket on the space of leaves of the foliation. We then lift this weak Poisson bracket to a weak odd Poisson bracket on the odd tangent bundle, interpreted as a weak Koszul bracket on differential forms on M. This lift is achieved by encoding the weak Poisson structure into a homotopy Poisson structure on an extended manifold, and lifting the Hamiltonian function that generates this structure. Such a construction has direct physical interpretation. For a generic gauge system, the submanifold may be viewed as a stationary surface or a constraint surface, with the foliation given by the foliation of the gauge orbits. Through this interpretation, the lift of the weak Poisson structure is simply a lift of the action generating the corresponding BRST operator of the system

    Quantizing non-Lagrangian gauge theories: an augmentation method

    Get PDF
    We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in dd dimensions into an equivalent Lagrangian topological field theory in d+1d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest.Comment: 46 pages, minor correction

    Unfree gauge symmetry in the BV formalism

    Get PDF
    The BV formalism is proposed for the theories where the gauge symmetry parameters are unfree, being constrained by differential equations

    Lagrange Anchor and Characteristic Symmetries of Free Massless Fields

    Full text link
    A Poincar\'e covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory

    Schwinger-Dyson equation for non-Lagrangian field theory

    Full text link
    A method is proposed of constructing quantum correlators for a general gauge system whose classical equations of motion do not necessarily follow from the least action principle. The idea of the method is in assigning a certain BRST operator Ω^\hat\Omega to any classical equations of motion, Lagrangian or not. The generating functional of Green's functions is defined by the equation Ω^Z(J)=0\hat\Omega Z (J) = 0 that is reduced to the standard Schwinger-Dyson equation whenever the classical field equations are Lagrangian. The corresponding probability amplitude Ψ\Psi of a field ϕ\phi is defined by the same equation Ω^Ψ(ϕ)=0\hat\Omega \Psi (\phi) = 0 although in another representation. When the classical dynamics are Lagrangian, the solution for Ψ(ϕ)\Psi (\phi) is reduced to the Feynman amplitude eiSe^{\frac{i}{\hbar}S}, while in the non-Lagrangian case this amplitude can be a more general distribution.Comment: 33 page

    Reducible gauge symmetry versus unfree gauge symmetry in Hamiltonian formalism

    Get PDF
    The unfree gauge symmetry implies that gauge variation of the action functional vanishes provided for the gauge parameters are restricted by the differential equations. The unfree gauge symmetry is shown to lead to the global conserved quantities whose on shell values are defined by the asymptotics of the fields or data on the lower dimension surface, or even at the point of the space-time, rather than Cauchy hyper-surface. The most known example of such quantity is the cosmological constant of unimodular gravity. More examples are provided in the article for the higher spin gravity analogues of the cosmological constant. Any action enjoying the unfree gauge symmetry is demonstrated to admit the alternative form of gauge symmetry with the higher order derivatives of unrestricted gauge parameters. The higher order gauge symmetry is reducible in general, even if the unfree symmetry is not. The relationship is detailed between these two forms of gauge symmetry in the constrained Hamiltonian formalism. The local map is shown to exist from the unfree gauge algebra to the reducible higher order one, while the inverse map is non-local, in general. The Hamiltonian BFV-BRST formalism is studied for both forms of the gauge symmetry. These two Hamiltonian formalisms are shown connected by canonical transformation involving the ghosts. The generating function is local for the transformation, though the transformation as such is not local, in general. Hence, these two local BRST complexes are not quasi-isomorphic in the sense that their local BRST-cohomology groups can be different. This difference in particular concerns the global conserved quantities. From the standpoint of the BRST complex for unfree gauge symmetry, these quantities are BRST-exact, while for the alternative complex, these quantities are the non-trivial co-cycles

    Worldsheet of a continuous helicity particle

    Get PDF
    We consider the class of spinning particle theories, whose quantization corresponds to the continuous helicity representation of the Poincare group. The classical trajectories of the particle are shown to lie on the parabolic cylinder with a lightlike axis irrespectively to any specifics of the model. The space-time position of the cylinder is determined by the values of momentum and total angular momentum. The value of helicity determines the focal distance of parabolic cylinder. Assuming that all the world lines lying on one and the same cylinder are connected by gauge transformations, we derive the geometrical equations of motion for the particle. The timelike world paths are shown to be solutions to a single relation involving the invariants of trajectory up to fourth order in derivatives. Geometrical equation of motion is non-Lagrangian, but it admits equivalent variational principle in the extended set of dynamical variables. The lightlike paths are also admissible on the cylinder, but they do not represent the classical trajectories of this spinning particle. The classical trajectories of massless particle (with zero helicity) are shown to lie on hyperplanes, whose space-time position depends on momentum and total angular momentum

    Lagrange structure and quantization

    Full text link
    A path-integral quantization method is proposed for dynamical systems whose classical equations of motion do \textit{not} necessarily follow from the action principle. The key new notion behind this quantization scheme is the Lagrange structure which is more general than the Lagrangian formalism in the same sense as Poisson geometry is more general than the symplectic one. The Lagrange structure is shown to admit a natural BRST description which is used to construct an AKSZ-type topological sigma-model. The dynamics of this sigma-model in d+1d+1 dimensions, being localized on the boundary, are proved to be equivalent to the original theory in dd dimensions. As the topological sigma-model has a well defined action, it is path-integral quantized in the usual way that results in quantization of the original (not necessarily Lagrangian) theory. When the original equations of motion come from the action principle, the standard BV path-integral is explicitly deduced from the proposed quantization scheme. The general quantization scheme is exemplified by several models including the ones whose classical dynamics are not variational.Comment: Minor corrections, format changed, 40 page

    Gauge symmetry of linearised Nordström gravity and the dual spin two field theory

    Get PDF
    The field equations are proposed for the third rank tensor field with the hook Young diagram. The equations describe the irreducible spin two massless representation in any d ≥ 3. The starting point of the construction is the linearised system of Einstein equations which includes the Nordström equation. This equation, being considered irrespectively to the rest of the Einstein system, corresponds to the topological field theory. The general solution is a pure gauge, modulo topological modes which we neglect in this article. We find the sequence of the reducible gauge transformations for the linearised Nordström equation, with the hook tensor being the initial gauge symmetry parameter. By substituting the general solution of the Nordström equation into the rest of the Einstein’s system, we arrive at the field equations for the hook tensor. The degree of freedom number count confirms, it is the spin two theory
    corecore