289 research outputs found
Condensin(g) Crossover Control to a Few Breaks
Meiotic chromosome pairs must receive at least one crossover to ensure proper segregation at the first meiotic division. Mets and Meyer (2009) now present compelling evidence that the establishment of higher-order chromosome structure by a condensin complex regulates crossover recombination by controlling the distribution and frequency of meiotic double-strand breaks
Biochemistry and Molecular Biology
Several forward and reverse proteomic approaches are available that can be used to identify interaction partners for a protein of interest. Here we provide methods for identifying interacting partners by the yeast two-hybrid system (a reverse proteomic method) and by tandem immuno-affinity purification of protein complexes combined with mass spectrometry (a forward proteomic method)
A Meiotic Checkpoint Alters Repair Partner Bias to Permit Inter-sister Repair of Persistent DSBs
Accurate meiotic chromosome segregation critically depends on the formation of inter-homolog crossovers initiated by double-strand breaks (DSBs). Inaccuracies in this process can drive aneuploidy and developmental defects, but how meiotic cells are protected from unscheduled DNA breaks remains unexplored. Here we define a checkpoint response to persistent meiotic DSBs in C. elegans that phosphorylates the synaptonemal complex (SC) to switch repair partner from the homolog to the sister chromatid. A key target of this response is the core SC component SYP-1, which is phosphorylated in response to ionizing radiation (IR) or unrepaired meiotic DSBs. Failure to phosphorylate (syp-16A) or dephosphorylate (syp-16D) SYP-1 in response to DNA damage results in chromosome non-dysjunction, hyper-sensitivity to IR-induced DSBs, and synthetic lethality with loss of brc-1BRCA1. Since BRC-1 is required for inter-sister repair, these observations reveal that checkpoint-dependent SYP-1 phosphorylation safeguards the germline against persistent meiotic DSBs by channelling repair to the sister chromatid.Cancer Research UK FC0010048UK Medical Research Council FC0010048Wellcome Trust FC0010048Ministerio de Economía y Competitividad BFU2016-75058-PEuropean Research Council ERC2014 AdG669898 TARLOO
Mechanisms of oncogene-induced replication stress:jigsaw falling into place
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication–transcription collisions, reactive oxygen species, and defective nucleotide metabolism. Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress
Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN
Classical non-homologous end joining (cNHEJ) and homologous recombination compete for the repair of double-stranded DNA breaks during the cell cycle. Homologous recombination is inhibited during the G1 phase of the cell cycle, but both pathways are active in the S and G2 phases. However, it is unclear why cNHEJ does not always outcompete homologous recombination during the S and G2 phases. Here we show that CYREN (cell cycle regulator of NHEJ) is a cell-cycle-specific inhibitor of cNHEJ. Suppression of CYREN allows cNHEJ to occur at telomeres and intrachromosomal breaks during the S and G2 phases, and cells lacking CYREN accumulate chromosomal aberrations upon damage induction, specifically outside the G1 phase. CYREN acts by binding to the Ku70/80 heterodimer and preferentially inhibits cNHEJ at breaks with overhangs by protecting them. We therefore propose that CYREN is a direct cell-cycle-dependent inhibitor of cNHEJ that promotes error-free repair by homologous recombination during cell cycle phases when sister chromatids are present
Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability
Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability
Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation
We thank David Stead at the Aberdeen Proteomics Service for help in mass spectrometry interpretation, and Raif Yücel and his team at the University of Aberdeen Iain Fraser Cytometry Centre for assistance with flow cytometry. We thank Robert Alver and Julian Blow at University of Dundee for advice on the use of tautomycetin. Peter Cherepanov of the Francis Crick Institute gifted XL413. Daniel Durocher of Lunenfeld-Tanenbaum Research Institute gifted DNA constructs. Work by ADD and SH was supported by Cancer Research UK Grant A13356, Cancer Research UK Programme Award A19059, and BBSRC grant (BB/K006304/1). AIL was supported by Wellcome Trust Awards (108058/Z/15/Z & 105024/Z/14/Z). This work was also supported by JSPS KAKENHI Grant # 16H04739, 25116004 to CO and 16J04327 to YO.Peer reviewedPublisher PD
Integrated transcriptome landscape of ALS identifies genome instability linked to TDP-43 pathology
Amyotrophic Lateral Sclerosis (ALS) causes motor neuron degeneration, with 97% of cases exhibiting TDP-43 proteinopathy. Elucidating pathomechanisms has been hampered by disease heterogeneity and difficulties accessing motor neurons. Human induced pluripotent stem cell-derived motor neurons (iPSMNs) offer a solution; however, studies have typically been limited to underpowered cohorts. Here, we present a comprehensive compendium of 429 iPSMNs from 15 datasets, and 271 post-mortem spinal cord samples. Using reproducible bioinformatic workflows, we identify robust upregulation of p53 signalling in ALS in both iPSMNs and post-mortem spinal cord. p53 activation is greatest with C9orf72 repeat expansions but is weakest with SOD1 and FUS mutations. TDP-43 depletion potentiates p53 activation in both post-mortem neuronal nuclei and cell culture, thereby functionally linking p53 activation with TDP-43 depletion. ALS iPSMNs and post-mortem tissue display enrichment of splicing alterations, somatic mutations, and gene fusions, possibly contributing to the DNA damage response
- …