2,667 research outputs found

    Environment and classical channels in categorical quantum mechanics

    Full text link
    We present a both simple and comprehensive graphical calculus for quantum computing. In particular, we axiomatize the notion of an environment, which together with the earlier introduced axiomatic notion of classical structure enables us to define classical channels, quantum measurements and classical control. If we moreover adjoin the earlier introduced axiomatic notion of complementarity, we obtain sufficient structural power for constructive representation and correctness derivation of typical quantum informatic protocols.Comment: 26 pages, many pics; this third version has substantially more explanations than previous ones; Journal reference is of short 14 page version; Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010

    Investigations of rate and multi-hit capability of multi-gap resistive plate chambers

    Get PDF
    The application of multi-gap resistive plate chambers (MRPC) for time-of-flight (TOF) measurements in future high-rate heavy-ion-collision experiments like CBM (Compressed Baryonic Matter) at FAIR is constrained by both challenging particle-flux and multi-hit conditions on the counter surface. Towards the center of the 120 m² TOF wall of CBM, fluxes of up to 25 kHz/cm² in gold-on-gold collisions at 10 MHz and 11 A GeV (SIS100) are handled by detectors with special low-resistive glass. At the periphery, common-glass counters are used for cost reasons. In this work, test-beam results for corresponding prototypes obtained in a multi-hit environment under moderate particle fluxes of 1–2 kHz/cm² at CERN/SPS are systematically analyzed for rate and interference effects on counter performance. For a reproduction in simulations, a novel parametrization of the MRPC response function is introduced which models both the impact of sustained irradiation on detection capability in time and the distortion of reconstructed hits by interfering induced signals. An envisaged qualitative agreement is achieved between real and simulated observations. While only the common-glass counter shows an expected performance degradation due to rate, the response evaluation of both prototypes via correlations on adjacent detectors is significantly complicated by multi-hit effects. The new response model provides a reliable simulation reference for further investigations on this matter

    Developing empirical management procedures to meet management objectives for data-limited fisheries

    Get PDF
    Most of the world’s fish stocks are considered data-limited and there are insufficient data for complex stock assessment models; nevertheless, scientifically sound management advice is required. Empirical management procedures rely on empirical data and can guide management decisions. The main goals of this project were to develop and test empirical management procedures to improve data-limited fisheries management. Candidate management procedures can be evaluated using management strategy evaluation, which simulates the managed system and management in a feedback loop. Here, many generic operating models were generated covering a wide range of life histories. First, a trend-based empirical management procedure was explored. Simulations revealed that the management performance depended on the individual growth rate of the species, and the method delivered poor performance with high risk of stock depletion for faster-growing species. However, management performance could be improved by applying a genetic algorithm and optimisation towards specified management objectives such as long-term sustainable exploitation and risk limits demanded by stakeholders. An alternative empirical method (harvest rates) was found to be applicable to faster-growing species. Optimised parameterisations of the empirical methods from generic simulations were confirmed for several case study stocks with more available data. These analyses suggested that the generic methods lead to precautionary management, but management performance can be improved through case-specific optimisation. The outcomes of this project showed that the current management practices of data-limited fisheries resources applied by the International Council for the Exploration of the Sea in Europe are insufficient and do not ensure sustainable and precautionary exploitation, even though this is required through international treaties. However, the management procedures evaluated in this study show a way to overcome current management deficiencies and indicate that simple empirical management procedures are a scientifically sound alternative to expensive model-based management approaches.Open Acces

    Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations

    Get PDF
    Receptor-ligand interactions are essential for biological function and their binding strength is commonly explained in terms of static lock-and-key models based on molecular complementarity. However, detailed information of the full unbinding pathway is often lacking due, in part, to the static nature of atomic structures and ensemble averaging inherent to bulk biophysics approaches. Here we combine molecular dynamics and high-speed force spectroscopy on the streptavidin-biotin complex to determine the binding strength and unbinding pathways over the widest dynamic range. Experiment and simulation show excellent agreement at overlapping velocities and provided evidence of the unbinding mechanisms. During unbinding, biotin crosses multiple energy barriers and visits various intermediate states far from the binding pocket while streptavidin undergoes transient induced fits, all varying with loading rate. This multistate process slows down the transition to the unbound state and favors rebinding, thus explaining the long lifetime of the complex. We provide an atomistic, dynamic picture of the unbinding process, replacing a simple two-state picture with one that involves many routes to the lock and rate-dependent induced-fit motions for intermediates, which might be relevant for other receptor-ligand bonds.Comment: 21 pages, 4 figure

    Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise

    Full text link
    This article aims to investigate the impact of noise on parameter fitting for an Ornstein-Uhlenbeck process, focusing on the effects of multiplicative and thermal noise on the accuracy of signal separation. To address these issues, we propose algorithms and methods that can effectively distinguish between thermal and multiplicative noise and improve the precision of parameter estimation for optimal data analysis. Specifically, we explore the impact of both multiplicative and thermal noise on the obfuscation of the actual signal and propose methods to resolve them. Firstly, we present an algorithm that can effectively separate thermal noise with comparable performance to Hamilton Monte Carlo (HMC) but with significantly improved speed. Subsequently, we analyze multiplicative noise and demonstrate that HMC is insufficient for isolating thermal and multiplicative noise. However, we show that, with additional knowledge of the ratio between thermal and multiplicative noise, we can accurately distinguish between the two types of noise when provided with a sufficiently large sampling rate or an amplitude of multiplicative noise smaller than thermal noise. This finding results in a situation that initially seems counterintuitive. When multiplicative noise dominates the noise spectrum, we can successfully estimate the parameters for such systems after adding additional white noise to shift the noise balance.Comment: 16 pages, 4 figure

    Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System

    Get PDF
    Belowground microorganisms are known to influence plants' performance by altering the soil environment. Plant pathogens such as cyanide-producing strains of the rhizobacterium Pseudomonas may show strong host-plant selectivity. We analyzed interactions between different host plants and Pseudomonas strains and tested if these can be linked to the cyanide sensitivity of host plants, the cyanide production of bacterial strains or the plant identity from which strains had been isolated. Eight strains (four cyanide producing) were isolated from roots of four weed species and then re-inoculated on the four weed and two additional crop species. Bacterial strain composition varied strongly among the four weed species. Although all six plant species showed different reductions in root growth when cyanide was artificially applied to seedlings, they were generally not negatively affected by inoculation with cyanide-producing bacterial strains. We found a highly significant plant species x bacterial strain interaction. Partitioning this interaction into contrasts showed that it was entirely due to a strongly negative effect of a bacterial strain (Pseudomonas kilonensis/brassicacearum, isolated from Galium mollugo) on Echinochloa crus-galli. This exotic weed may not have become adapted to the bacterial strain isolated from a native weed. Our findings suggest that host-specific rhizobacteria hold some promise as biological weed-control agents
    • …
    corecore