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Abstract

Most of the world’s fish stocks are considered data-limited and there are insufficient data for

complex stock assessment models; nevertheless, scientifically sound management advice is re-

quired. Empirical management procedures rely on empirical data and can guide management

decisions. The main goals of this project were to develop and test empirical management pro-

cedures to improve data-limited fisheries management. Candidate management procedures can

be evaluated using management strategy evaluation, which simulates the managed system and

management in a feedback loop. Here, many generic operating models were generated cover-

ing a wide range of life histories. First, a trend-based empirical management procedure was

explored. Simulations revealed that the management performance depended on the individual

growth rate of the species, and the method delivered poor performance with high risk of stock

depletion for faster-growing species. However, management performance could be improved by

applying a genetic algorithm and optimisation towards specified management objectives such

as long-term sustainable exploitation and risk limits demanded by stakeholders. An alternative

empirical method (harvest rates) was found to be applicable to faster-growing species. Optim-

ised parameterisations of the empirical methods from generic simulations were confirmed for

several case study stocks with more available data. These analyses suggested that the generic

methods lead to precautionary management, but management performance can be improved

through case-specific optimisation. The outcomes of this project showed that the current man-

agement practices of data-limited fisheries resources applied by the International Council for

the Exploration of the Sea in Europe are insufficient and do not ensure sustainable and precau-

tionary exploitation, even though this is required through international treaties. However, the

management procedures evaluated in this study show a way to overcome current management

deficiencies and indicate that simple empirical management procedures are a scientifically sound

alternative to expensive model-based management approaches.
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1.1 Background

The consumption of marine fish as food and a source of protein by humans has a long history.

In the early periods of large-scale fishing activities by humans, fish populations were seen by

many as inexhaustible natural resources. However, with technological advancements and more

intensive fishing, large fish populations started to decline, and the impact of human activities

on fish populations started to dawn. One of the early scientists to express this was Russell

(1931), who mentioned that the size of a fish stock (a self-contained part of a population of a

specific species in an area that is subject to fishing) depends on processes increasing the stock

size (recruitment and growth) and decreasing it (deaths due to natural causes, i.e. natural

mortality, and fishing). Consequently, when total deaths exceed production, the stock size will

decline, and to counter this trend, catches need to be reduced.

Fish stocks themselves cannot be managed, but the fishery harvesting those stocks can be.

This is where fisheries management comes in, which is meant to ensure sustainable exploitation

of harvested fish stocks (Hilborn & Walters, 1992). There are several possible interpretations

of what constitutes sustainability. For example, the Food and Agricultural Organization (FAO)

offers a broad definition: “Sustainable development is the management and conservation of

the natural resource base, and the orientation of technological and institutional change in such

a manner as to ensure the attainment and continued satisfaction of human needs for present

and future generations. Such development conserves land, water, plant genetic resources, is

environmentally non-degrading, technologically appropriate, economically viable and socially

acceptable.” (Garcia, 1996).

For fisheries management to be successful, management objectives need to be defined, setting

out the general aims of fisheries management. Fisheries management objectives often include

sustainability considerations or specific interpretations of sustainability, such as keeping a fish

stock at a healthy stock size. Such objectives are often operationalised by defining reference

points in a management framework. This approach allows taking corrective action, such as

reducing catch, when the stock size of a fish stock falls below a trigger reference point. Man-

agement reference points always refer to observed or modelled stock estimates in a management

framework because the underlying reality (the fish stock) is unknown and can only be inferred

from observations.
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Two common management paradigms are the precautionary approach (PA) and the max-

imum sustainable yield (MSY). The precautionary approach (Garcia, 1996) is aimed at avoiding

a low stock size, below which recruitment is thought to be impaired, by considering uncertainty

(the condition of being uncertain about states or processes because of a lack of knowledge),

error (a mistake caused by making wrong assumptions), and risk (the potential of negative con-

sequences of a decision). The precautionary approach is operationalised through the definition

of biological limit reference points, and fisheries management should ensure that management

measures keep the risk of falling below this limit reference point low. On the other hand, the

MSY principle defines the stock condition where a stock is most productive and can produce

the highest long-term catch. The MSY approach is often used as a management objective target

(e.g. ICES, 2019a).

Fisheries management is always based on incomplete knowledge. For commercially and

politically important fish populations, extensive data sampling programmes might exist that

cover both fisheries-dependent and fisheries-independent sources. For example, such data exist

for many fish stocks in the Northeast Atlantic and international data collection is coordinated

by the International Council for the Exploration of the Sea (ICES). Such a data-rich situation

allows the application of complex mathematical stock assessment algorithms to estimate stock

development over time and current stock status. However, even in such a case, the perception of

the fish stock is based on a model, which is, by definition, a simplification of reality (Burnham,

2004) that does not include the full complexity of the modelled system. Furthermore, all models

are wrong to some degree, but some can nevertheless be useful (Box, 1976).

For the majority of fish stocks in the world, data availability is insufficient and quantitative

stock assessment models cannot be applied successfully (Rosenberg et al., 2014). The reasons

for the lack of data can be manifold and include little commercial or political interest (e.g.

for bycatch species), or capacity limitations (e.g. insufficient scientific funding, expertise, and

resources) that do not allow the set up of data collection programmes for all stocks. Such

fish stocks and their fisheries, for which no quantitative stock assessments exist, are generally

classified as “data-limited” (Rosenberg et al., 2014).

Definitions of what constitutes data-limited can vary depending on the fisheries management

body. In this thesis, the classification of ICES is used, which defines categories depending on the

data availability and the applicability of stock assessment methods (ICES, 2019a). In this ICES

context, the term data-limited refers to fish stocks for which quantitative stock assessments do
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not exist, or if they exist, are considered too uncertain to provide estimates of absolute stock

metrics and are merely used to inform on stock trends such as the development of relative stock

size over time. This separates data-limited fish stocks from the data-rich stocks and also from

data-poor stocks, for which almost no data and knowledge are available. The data categorisation

and the extent of data limitations are described and discussed in detail in Chapter 4.

The current best practice for evaluating management strategies is by conducting simulations

using management strategy evaluation (MSE; Smith, 1994; Punt et al., 2016), which dates

back to the 1980s at the International Whaling Commission (Butterworth, 2007). MSE aims

to simulate the entire managed system as well as the management system within a feedback

loop to evaluate the management performance of candidate management strategies. Within an

MSE, an operating model represents the biological stock and the fishery harvesting this stock.

Observations from this operating model are passed on to a management strategy, which uses

these data and deploys a decision rule to derive a management decision, such as setting a catch

limit. The management decision is then fed back into the operating model. This feedback

loop is then simulated through time and the management performance evaluated. Management

strategies that have been formally defined (including all data and how data is processed) and

evaluated through MSE, are generally called management procedures (tRFMO, 2018). The

MSE approach, its origins, its role in the development of operational management strategies,

and how it became the current paradigm in fisheries science are discussed in Chapter 2.

The MSE approach encourages participation from stakeholders such as fishers, policymakers,

and environmentalists who might have substantially different views on fisheries management

objectives. MSE can help to illustrate trade-offs between management objectives and develop

management procedures that balance potentially conflicting objectives. In addition, stakeholder

participation can increase trust in the process of developing management procedures because

different stakeholder groups can express their views and are involved in the decision process.

A crucial factor when using modelling approaches to guide management decisions is the

characterisation of uncertainty to ensure the robustness of the modelling approach as well as

management decisions to uncertainty. This is particularly important in data-limited situations

where uncertainty is usually larger and a more comprehensive range of uncertainty needs to

be included. Important factors of uncertainty to consider are natural variation and epistemic

uncertainty. Natural variation can occur in many biological processes, such as individual growth

or recruitment success. Epistemic uncertainty describes the uncertainty caused by incomplete
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knowledge of the processes in the studied system, such as how biological processes are linked.

In modelling approaches, epistemic uncertainty can, in theory, be reduced by collecting more

data and conducting additional studies, whereas natural variation cannot be reduced and needs

to be modelled. Chapter 2 provides a more detailed explanation of how uncertainty is handled

in MSE.

Management procedures can broadly be grouped into model-based and empirical manage-

ment procedures (Rademeyer et al., 2007). Model-based management procedures make use of

a population model to set management decisions. Alternatively, empirical management proced-

ures are model-free, require only empirical data, and can be more suitable in situations with

limited data because these do not rely on capacity (data and people) intensive modelling ap-

proaches. A review of empirical management procedures in a data-limited context is provided

in Chapter 3.

For the Northeast Atlantic, ICES is the main international body to provide scientific advice

on fishing opportunities, which is then applied into legislation by EU member states and in

negotiations with independent coastal states (ICES, 2019e). ICES advice on fishing opportun-

ities includes advice for data-limited fish stocks. Within ICES, the main avenue for developing

methodology applicable to data-limited fish stocks is through the ICES “Workshop on the De-

velopment of Quantitative Assessment Methodologies based on LIFE-history traits, exploitation

characteristics, and other relevant parameters for data-limited stocks” (ICES, 2012d, WKLIFE).

This workshop attracts experts on data-limited stocks both from within the ICES community

as well as from around the world. The first meeting of WKLIFE took place in 2012 (ICES,

2012d), and initiated the development of the data-limited advisory method framework currently

in place. Usually, ICES workshops happen once or a limited number of times in consecutive

years. However, due to its importance for the ICES advisory process, the workshop series has

been running continuously, and the tenth WKLIFE meeting was held in 2020 (ICES, 2020a).

The general aim of this PhD project is to improve the management of data-limited fisheries

resources, mainly within the ICES system, by developing and testing data-limited empirical

management procedures. The project is ideally placed to satisfy this aim because of its unique

collaboration between academia (Imperial College London) and the responsible UK government

agency (Centre for Environment, Fisheries and Aquaculture Science, Cefas), and the collabora-

tion with ICES. The work conducted in this PhD project is closely aligned with the objectives

of ICES WKLIFE and is an integral part of the workshop. This cooperation with ICES of-
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fers an opportunity for the direct uptake of the outcomes of the PhD project into an advisory

framework, with potential application to dozens of fish stocks.

1.2 Problem statement

There are two main problems fisheries management must address;

(i) Conservation: management decisions need to ensure precautionary exploitation to avoid

overfishing (unsustainable high fishing pressure) as well as recovering overfished stocks

(reduced stock size because of overfishing), and

(ii) Exploitation: maximising yield (e.g. with the MSY approach) to provide a food source

and sustained income for fishers.

These two elements are both important and need to be considered in combination. Focusing

purely on conservation with precautionary fisheries management could easily be achieved by

restricting any fishing activities; however, this comes at a high economic and food security

cost. The two management objectives are often a legal requirement of national or international

regulations and treaties. Examples are the Common Fisheries Policy of the European Union

(EU, 2013) and the United Kingdom’s Fisheries Act 2020 (HM Government, 2020). The UK’s

Fisheries Act, for instance, mandates fisheries management to follow precautionary and MSY

principles, and this applies to all exploited fish stocks, irrespective of their status.

The majority of the world’s fish stocks are data-limited (Rosenberg et al., 2014) but never-

theless require appropriate fisheries management. The lack of knowledge and data makes the

exploration and development of candidate management strategies particularly challenging be-

cause of high uncertainty and a lack of clearly defined management objectives. On the other

hand, data-limited fisheries management can be more interesting because management needs

to be robust to a plethora of uncertainties, and requires thinking outside the box of traditional

fisheries management, calling for the adoption of novel approaches.

ICES classifies fish stocks into categories depending on data availability and developed meth-

ods to provide advice for each of them (ICES, 2012b). This PhD project focuses on ICES cat-

egory 3 data-limited stocks, for which catch data and a reliable abundance index exist. In the

absence of reliable quantitative stock assessments, stock size and fishing pressure are unknown

for these stocks. Since 2012, an index-adjusted status quo catch rule has been used for advice

purposes. This catch rule scales the recent catch advice depending on the stock trend inferred
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from an abundance index, in combination with an uncertainty cap limiting the change in advice

from year to year, and a precautionary buffer reducing the advice when the stock is thought

not to be in a good state (ICES, 2018b). The management advice based on this framework

has major deficiencies (e.g. can increase risk over time or induce large long-term oscillations;

Fischer et al., 2021b) and was only meant as an interim solution. Furthermore, despite being

labelled the ICES precautionary approach, the index-adjusted status-quo catch rule was never

shown to follow precautionary principles, and due to the lack of any management target, it is

not MSY-compliant.

The research problem addressed within this PhD project is further elaborated and narrowed

down in the following three review chapters (Chapters 2, 3, and 4), which provide a more detailed

context of the MSE paradigm, including how MSE aims to create a modelled system of reality,

a description of the current ICES advice system and why it fails to deliver what is promised,

and a review of possible alternative management procedures.

1.3 Objectives and approach

The general idea of this PhD project is to advance and improve data-limited fisheries manage-

ment by developing and testing management procedures using MSE. The PhD project provides

evidence that the currently-applied data-limited ICES methods are inadequate for fisheries man-

agement. Furthermore, it provides a scientific justification for revising the current ICES system

by proposing alternative methods. The focus will be on empirical control rules, and these will

be subjected to rigorous simulation testing to ensure they are fit for purpose and comply with

legal frameworks setting out management objectives.

Because the main study focuses on data-limited fish stocks, initial simulations will be con-

ducted generically, i.e. generic operating models will be created from life-history parameters and

many different life histories included. This approach will allow the screening of candidate man-

agement procedures, and inferences to be made about management performance for different

life histories.

Subsequently, the empirical methods will be modified to improve management performance.

This analysis will include exploring fisheries management objectives, such as risks and catch and

their trade-offs. Once management objectives have been defined, the management procedures

can be tuned to satisfy these with optimisation methods, such as genetic algorithms (Holland,
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1992). Such optimisations are very computationally demanding and will therefore require high-

performance computing systems.

The ideal outcomes of the simulation testing are establishing generic methods providing a

suitable management measure for data-limited stocks in the absence of further knowledge or

data, and providing guidelines on how to apply these methods depending on factors such as life

history and historical exploitation.

Model validation is notoriously difficult for simulations in fisheries science because the studied

system (a fish stock) is never known in its entirety, and only inferences from observations are

possible. One approach for validating generic simulation results for data-limited stocks is using

data-rich fish stocks for which fully quantitative assessments exist and stock parameters are

known with more confidence. This approach will be used for several case studies and allows

the conditioning of potentially more realistic operating models against which the data-limited

methods previously developed with generic simulations can be benchmarked.

An important consideration for developing management procedures in this PhD project is

their robustness to various uncertainties. In the initial generic simulations, robustness is con-

sidered by simulating many different life histories and conducting sensitivity analyses. This is

meant to ensure that outcomes are robust to potentially arbitrary decisions such as the model

structure or the level of uncertainty. The subsequent simulations for case study stocks follow a

structured approach by conducting robustness trials with a range of alternative operating mod-

els representing different assumptions about model structure and parameters. This structured

approach allows an evaluation of the robustness of the previously developed generic management

procedures.

1.4 Publications

At the time of writing (July 2022), the following four articles have already been published in

peer-reviewed journals:

• Chapter 6

Fischer, S. H., De Oliveira, J. A. A. & Kell, L. T. (2020). Linking the performance of a

data-limited empirical catch rule to life-history traits. ICES Journal of Marine Science,

77 (5), 1914–1926. https://doi.org/10.1093/icesjms/fsaa054

• Chapter 7
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Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2021a). Using a genetic

algorithm to optimize a data-limited catch rule. ICES Journal of Marine Science, 78 (4),

1311–1323. https://doi.org/10.1093/icesjms/fsab018

• Chapter 8

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2021b). Application

of explicit precautionary principles in data-limited fisheries management. ICES Journal

of Marine Science, 78 (8), 2931–2942. https://doi.org/10.1093/icesjms/fsab169

• Chapter 9

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2022). Exploring

a relative harvest rate strategy for moderately data-limited fisheries management. ICES

Journal of Marine Science, 12 pp. https://doi.org/10.1093/icesjms/fsac103

One chapter is based on a submitted manuscript:

• Chapter 11

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (n.d.). Risk equivalence

in data-limited and data-rich fisheries management: an example based on the ICES advice

framework (manuscript submitted to Fish and Fisheries)

I am the first author for all published or draft publications mentioned here. The contributions

of co-authors were limited to discussions of the ideas and analysis, critical revision, and final

approval. Where material from the published articles was reused in this thesis, this is explicitly

stated at the beginning of the respective chapters.

1.5 Structure of this thesis

The thesis is structured as follows:

• Chapter 1 (this chapter) introduces the work of this thesis, articulates the main problem

addressed, and sets the objectives of this project.

• Chapters 2, 3, and 4 comprise the literature review. Chapter 2 introduces the MSE ap-

proach, Chapter 3 reviews and categorises empirical management procedures, and Chapter

4 introduces the advisory framework used by ICES.
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• Chapter 5 describes the creation of the generic operating models from life-history para-

meters used in subsequent chapters and includes an elasticity analysis of the operating

models.

• Chapter 6 describes the early simulation testing of an empirical management procedure

(the “rfb rule’) and how the management performance of this rule could be linked to life

history of the simulated stocks.

• Chapter 7 shows how a genetic algorithm can be used to improve the management per-

formance of the rfb rule towards achieving long-term sustainability objectives.

• Chapter 8 builds on Chapter 7 and adds the consideration of explicit risk limits in the

optimisation of the rfb rule to ensure compliance with the precautionary approach.

• Chapter 9 analyses an alternative management procedure based on the concept of harvest

rates.

• Chapter 10 explores very fast-growing species, how they could be simulated, and the

implications for management.

• Chapter 11 uses case-specific simulations to compare the empirical data-limited methods

of this thesis to the data-rich ICES methods used for managing fisheries.

• Chapter 12 is a conclusion of the findings and discusses the impact of the work to date.

The complete thesis is relatively long. To improve the readability of the thesis, all chapters,

excluding the introduction and conclusion, short abstracts are included at the beginning of each

chapter. Furthermore, the main original research chapters (Chapters 6-11) are essentially self-

contained and can be read independently. Nevertheless, these chapters build upon each other

with many back-references, and later chapters address gaps identified earlier.
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Chapter 2

An introduction to management

strategy evaluation
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2.1 Abstract

The term management strategy evaluation (MSE) describes a simulation technique in which

the performance of management procedures is tested against management objectives. An MSE

comprises two main parts: an operating model and a management procedure, connected through

a feedback loop. The operating model contains the biological stock and the fishery exploiting

it. From this operating model, observations are passed on to the management procedure, in

which a decision rule takes this information and generates a management measure, such as a

catch quota. This management decision is then returned to the operating model. Operating

models are often based on the outcomes of complex stock assessment models, or in more data-

limited situations, can be generated based on life-history considerations. For an MSE to be

successful, it is essential that realistic uncertainty considerations are included and that quantifi-

able management objectives exist. MSEs have been used in fisheries science for several decades

and are considered the state-of-the-art methodology for evaluating the robustness of candidate

management procedures.

2.2 Background

The traditional approach in fisheries science to manage fisheries is to follow the “best assessment

paradigm” (Stewart & Martell, 2015). In this approach, the best scientific knowledge is used in

a stock assessment model and the results of the model are used to guide management decisions,

for example, with a harvest control rule that sets a management measure such as a catch limit.

Alternative models might be considered and a “best assessment” is selected based on criteria

such as the goodness of fit to observed data. The approach can include a short-term forecast, in

which the stock as perceived by the assessment model is projected into the future and a specific

management target, such as the fishing mortality corresponding to the maximum sustainable

yield (FMSY), is converted into a catch value (ICES, 2019a).

An issue with this best assessment approach is that while an assessment might be the best

available scientific knowledge about a fish stock, the perception might still be biased. Further-

more, specific management objectives might be defined and formalised in a harvest control rule;

however, statements about the ability of the management approach to meet these objectives are

limited because the feedback of the fisheries management on the stock is unknown. To address

these issues, the management strategy evaluation (MSE) approach was developed (Smith, 1994;
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Punt et al., 2016). In an MSE, the impact of management on the managed system is simulated

in a closed-loop simulation. MSE allows the development and evaluation of the management

approaches to ensure that management objectives are met. Butterworth (2007) described MSE

as the modern alternative to the traditional best assessment approach.

2.3 The management strategy evaluation framework

MSE is a framework to test management procedures with simulations (De Oliveira et al., 2009;

Punt et al., 2016). The simulation consists of a feedback control loop that includes the managed

system and the influence of management on this system, and is represented by two main building

blocks, the operating model and the management procedure (Figure 2.1).

Operating model

Implementation 
model

Management procedure

Biological and 
fishery model

Data 
generation

Performance statistics

Harvest control 
rule

Estimation 
method

Management 
regulations

Monitoring 
data

Agree and specify the
Conceptual objectives

Figure 2.1: Conceptual overview of the management strategy evaluation modelling process.
Figure adapted from Figure 1 of Punt et al. (2016). © 2014 John Wiley & Sons Ltd.

The operating model represents the true dynamics of the managed system (De Oliveira et al.,

2009) and comprises the biological system (one or more fish stocks) and the fishery operating on

it. Within the operating model, data such as catches and survey indices are generated and fed

into the management procedure. The exact data depend on the requirements of the management

procedure, and observation noise is often added to the data to mimic sampling uncertainty. The

management procedure assesses the status of the stock(s) based on the data obtained from

the operating model and sets management options subject to the perceived stock status. The
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management procedure can be based on a fully quantitative stock assessment as an estimation

model (a model-based management procedure), in which case a harvest control rule can be

applied to the results of a short-term forecast from the estimation model. Alternatively, in more

data-limited situations, an empirical (model-free) management procedure can be applied, which

uses simple empirical indicators from the operating model directly in a harvest control rule to set

management measures. The following chapter (Chapter 3) introduces the concept of empirical

management procedures. The management procedure’s output is a management measure such

as total allowable catch or effort, which is returned to the operating model and subsequently

implemented, thereby closing the feedback loop. This management cycle is then simulated over

a time horizon of several years.

The performance of the management procedure can then be summarised through perform-

ance statistics, such as average stock status (spawning stock biomass, SSB), exploitation (fishing

mortality, F) or catch, catch variability, and biological risks (e.g. risk of the stock falling below

limit reference points). Such statistics allow the comparison of alternative management pro-

cedures (or variations thereof), and it is possible to check if the tested management procedures

meet predefined criteria, e.g. compliance with the precautionary approach.

Punt et al. (2016) describe seven sequential steps required to conduct an MSE: (1) identify

management objectives, (2) identify uncertainties, (3) develop operating models, (4) select op-

erating model parameters and uncertainty, (5) identify candidate management procedures, (6)

simulate, and (7) summarise and interpret performance.

MSE is not a strict protocol but rather a flexible framework that encourages stakeholder

participation and includes simulation testing. The actual design of simulation exercises can be

adapted to specific needs.

2.4 History of management strategy evaluation

The history of MSE in the management of marine living resources dates back to the second

half of the 20th century. Early attempts to simulate fisheries management can be found in

Southward (1968), who simulation tested management scenarios for Pacific halibut, and Hilborn

(1979), who simulated generic fish stocks (slow and fast-growing). Although not called MSE at

the time, these two examples followed the same principles and included feedback control. The

MSE approach was then fully introduced into fisheries science in the 1980s by the International
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Whaling Commission (IWC; Butterworth, 2007; Punt & Donovan, 2007), which is often attrib-

uted to be the pioneer for MSE (De Oliveira et al., 2009). Previously, the IWC had based its

management advice on the “new management procedure” that failed because it did not achieve

the intended objectives of facilitating scientific agreement, and because of continued arguments

within the IWC’s community about appropriately accounting for uncertainty (Butterworth,

2007). Subsequently, the “revised management procedure” was defined and during the process

of its development, the MSE approach, called the management procedure approach within the

IWC, evolved. This approach includes the simulation testing of alternative or variants of decision

rules to come up with an optimal solution (Butterworth, 2007). The IWC has formally adopted

the revised management procedure; however, they have never formally implemented it to set

catch limits because of a commercial whaling moratorium (Punt & Donovan, 2007), although

individual nations may have used the revised management procedure (with case-specific tuning)

to set catch limits for their whaling activities. Nevertheless, the process leading to this approach

can be considered a success because it paved the way for the MSE approach.

After the development of MSE in the IWC, this simulation-based approach found its way

into other management systems concerning renewable living resources, particularly into fisheries

science. Smith (1994) is one of the first to use the term MSE in a fisheries science context

and praises this approach as “the light on the hill” (Smith, 1994, p. 249) for testing and

developing management strategies. Furthermore, Smith formulates the critical argument that

an MSE “focuses on the needs of the decision-maker by providing a basis for choosing between

alternative decisions or strategies, rather than seeking to identify an ‘optimal’ decision” (Smith,

1994, p. 252). This statement is crucial for this approach because scientists could theoretically

simulation test a vast range of possible scenarios, which is of limited value, and the decision-

makers should, therefore, “be explicit about management objectives and targets” (Smith, 1994,

p. 252) before an evaluation is carried out.

Butterworth and Punt (1999) mention several studies in which MSEs were carried out during

the 1990s. The authors mainly list studies from the southern hemisphere, and the list includes

fish stocks such as South African Cape hake, anchovy, sardine and rock lobster, Namibian orange

roughy, New Zealand rock lobster, Australian gemfish and Southern bluefin tuna. Furthermore,

North Sea cod (Pelletier & Laurec, 1992) is mentioned, which might well be the first (published)

MSE in Europe.
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The terms management procedure approach and MSE are largely synonymous in describing

the simulation testing of management procedures to derive sound management advice (Butter-

worth, 2007) and either is favoured in different scientific and political communities around the

world. The tuna regional fisheries management organisation’s glossary on MSE (tRFMO, 2018)

describes a management procedure as a management strategy in which all elements have been

formally defined and their combination has been evaluated with simulations. The term man-

agement procedure approach is commonly used within the IWC (e.g. Punt & Donovan, 2007)

and in South Africa (e.g. Geromont et al., 1999), whereas the term MSE is used in many other

organisations and parts of the world, such as within the International Council for the Explor-

ation of the Sea (ICES) and Europe, North America, and Australia (e.g. Smith et al., 1999;

Kell et al., 2005; Wetzel & Punt, 2011). In some contexts, the term MSE can indicate a larger

process with explicit stakeholder participation (e.g. commonly adopted by tuna regional fishery

management organisations; Sharma et al., 2020), and the simulation of candidate management

procedures (i.e. management procedure evaluation) is only a part of this process. In this thesis,

the term management strategy evaluation (MSE) is used in the sense of a closed-loop simulation

of management procedures.

2.5 Operating models

Operating models represent the true dynamics of the simulated system and should, therefore, be

as realistic as possible and account for uncertainty (De Oliveira et al., 2009). Operating models

need to be set up and conditioned to represent biological stocks, their intrinsic stock dynamics,

and the fishery exploiting the stocks.

The usual approach to developing an operating model is to condition it on stock assessment

results, which can be considered the best available science on stock perception. However, this

approach can only be used for stocks for which stock assessments are available, i.e. usually for

data-rich stocks only.

The benefit of having a stock assessment is that many of the parameters required to simulate

a stock have already been explored as part of the process of setting up a stock assessment. This

exploration includes considerations of stock structure, biological parameters such as natural

mortality and maturity, and data from the fishery. The results of a stock assessment provide

essential details such as the age structure of the population (if an age-structured assessment is
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available) and the current condition of the stock in terms of stock size and fishing mortality.

Furthermore, modern stochastic stock assessments provide estimates of uncertainty of various

variables and parameters, depending on the model formulation, and can include uncertainty

quantification of stock numbers and fishing mortality at age, catch and survey data (Nielsen &

Berg, 2014). The availability of stock assessment results also provides a historical time series of

recruitment estimates and allows for the definition of an appropriate stock-recruitment model,

a crucial component during a simulation that defines stock productivity.

The operating models for North Sea stocks (cod, haddock, whiting, saithe and herring,

ICES, 2019h) developed for the evaluation of long-term management plans could be considered

a state-of-the-art implementation of a stochastic single-species operating model. These oper-

ating models were based on the results of an age-structured stochastic stock assessment model

with time-varying selectivity (SAM, Nielsen & Berg, 2014). SAM is defined as a state-space

model in which processes (stock numbers and fishing mortality), as well as observations (catches

and surveys), are modelled as stochastic processes. This formulation allows the estimation of

uncertainty in processes and observations, which, when implemented into the operating model

of an MSE, improves realism. The recruitment model was generated by fitting it to the estim-

ates of recruitment and SSB and converting model residuals into a continuous distribution with

a kernel density smoother, which allowed recruitment residuals to be sampled for the forward

projection in the MSE.

The generation and evaluation of data-limited stocks and management procedures are chal-

lenging due to the data limitations. There are two main approaches to handle this situation:

(i) borrow operating models from data-rich stocks and (ii) generate operating models based on

life-history considerations.

2.5.1 Borrowing from data-rich stocks

In many examples of testing data-limited management procedures, the operating models were

conditioned on stock assessments of data-rich stocks, e.g. Klaer et al. (2012) conditioned operat-

ing models on Australian stocks (tiger flathead, jackass morwong, school whiting) or Geromont

and Butterworth (2015b) on North Sea plaice and sole, and New England witch flounder and

plaice. In these cases, the operating models mimic the stock and fishery as perceived by the

stock assessment model, and the operating model structure follows the model structure of the

stock assessment model. MSEs conducted with such operating models can only be indicative of
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the performance of potential management procedures because they have not been tested on the

stocks for which these management procedures are intended. Furthermore, the development of

data-rich operating models can be a time-consuming process. Therefore, evaluations are often

limited to few stocks, and conclusions on management performance depending on life history are

limited. In order to improve the scope of the outcomes of such MSEs, data-rich operating models

are sometimes used as the basis and then subjected to artificial fishing histories. Examples are

the operating models of Klaer et al. (2012) that are conditioned on data-rich stocks but are then

projected forward to derive distinct depletion levels (35% and 60% of unfished biomass).

An exception to the use of data-rich operating models is the analysis of Plagányi et al. (2018),

which evaluated a data-limited management procedure for a tropical rock lobster. For this stock,

a (data-limited) stock assessment model exists, and the aim for developing this model was that

it could then be used in an MSE. Such cases are rare because the development of quantitative

stock assessments, including the necessary data collection, is expensive and can usually only be

afforded for economically important stocks. Sometimes, only specific parameters are borrowed

(i.e. copied) from other data-rich stocks, e.g. in the swordfish model of Campbell and Dowling

(2005), natural mortality is borrowed from the data-rich stock assessment of southern bluefin

tuna.

2.5.2 Using life-history information

The alternative to borrowing data-rich operating models is to generate operating models from

life-history information. This approach is based on the idea that biological parameters are

correlated, and is founded on early work of Beverton and Holt (1959), which has been used several

times (e.g. Prince et al., 2015). The correlations can be expressed as mathematical relationships

between parameters derived from empirical data, and this can be used to approximate missing

parameters.

An example of a biological parameter that is notoriously difficult to estimate, even for data-

rich stocks, is natural morality (Quinn & Deriso, 1999). Natural mortality is a crucial parameter

in analytical stock assessments, as well as in simulations. There are a range of options to calculate

natural mortality, such as through analyses of catch curves or length-frequencies, mark-recapture

experiments, collection of dead organisms, multi-species models, or inferences from life-history

(Quinn & Deriso, 1999). Analytical approaches require substantial amounts of data, and are

therefore expensive and not applicable to data-limited stocks. However, empirical relationships
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exist; for example Lorenzen (1996) or Gislason et al. (2010) provide formulations for estimating

natural mortality at length from simple growth parameters.

An example where operating models were created from life-history parameters is the study

of Carruthers et al. (2014), where six fish stocks were simulated (mackerel, butterfish, snapper,

porgy, sole, rockfish) and the same approach was subsequently used for three additional stocks

(Atlantic bluefin tuna, Pacific herring and canary rockfish, Carruthers et al., 2016). Included

were parameters about individual growth (von Bertalanffy growth parameters), the length-

weight relationship, natural mortality, maturity, selectivity, and the stock-recruitment model.

Despite basing the operating models on life-history parameters, the parameters themselves were

extracted from data-rich stock assessments.

Geromont and Butterworth (2015a) deployed a similar approach but did not create stock-

specific operating models, but instead a single operating model as a conglomerate of several

species by defining ranges of life-history parameters. This approach allows the evaluation of

management procedures with a generic stock but without being able to make statements about

life-history dependent performance.

Jardim et al. (2015) generated operating models for 50 different stocks, which covered a wide

range of life-history traits. Nevertheless, the parameters for these stocks were species averages

and did not correspond to particular stock units. Hence, not all these simulated stocks are

necessarily realistic because sets of life-history parameters are correlated, and averaging them

can create unrealistic combinations.

Wetzel and Punt (2011) created two generic operating models, flatfish and rockfish, based

on life-history parameters, and essentially used the algorithms of an integrated stock assessment

model (stock synthesis, Methot & Wetzel, 2013) for the operating model conditioning. However,

it should be noted that this operating model was used to test catch-only methods in a simulation,

but without the usual feedback loop of an MSE.

Simulating operating models from life-history parameters has the benefit that many stocks

can be created covering a wide range of life-history traits. Furthermore, because the stocks are

simulated, any fishing history can be applied to them. This process allows the generation of

operating models with different starting conditions, and therefore the sensitivity of management

procedures to the stock condition can be analysed.
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2.6 Management objectives

Defining explicit management objectives is important for fisheries management in general, as

well as for the successful evaluation of management procedures. Punt et al. (2016) state the

identification of management objectives as the first step of an MSE. A common principle adopted

by international agreements is the precautionary approach (Garcia, 1996). In general, the pre-

cautionary approach aims to reduce the risk of damaging the exploited resource and to account

for uncertainty (see Chapter 8 for a detailed description of the precautionary approach and how

it can be implemented into fisheries management). In addition, there are other management

principles such as the maximum sustainable yield (MSY, i.e. aiming to move fish stocks to a

level where they are most productive in the long term) that can be adopted alongside the pre-

cautionary approach. As an example, within ICES, the aim is to maximise the long-term yield

(i.e. follow the MSY approach); however, this is secondary to the overarching requirement of

following the precautionary approach (ICES, 2019h, 2019a, see Chapter 11 for an example how

these two principles can be combined). Management objectives are usually defined broadly in

national or international fisheries policies and are not always expressed precisely. Such general

objectives are challenging to interpret for the purpose of MSE where conceptual objectives need

to be converted into operational objectives in order to quantify these in terms of performance

statistics (De Oliveira et al., 2009; Punt et al., 2016).

Furthermore, the management objectives of stakeholders can differ, where, for example,

fishers aim for high yields and catch stability, whereas others might consider the reduction of

the risk of low stock status more important. Consequently, trade-offs of conflicting objectives

need to be balanced.

Management objectives are even more difficult in data-limited situations, where certainty

about the stock condition is lacking. Therefore, in simulations of data-limited management

procedures, it is often only feasible to compare alternative management procedures without the

possibility of providing specific risk levels.

2.7 Uncertainty

De Oliveira et al. (2009) and Kell et al. (2006) state the following elements of an MSE where

uncertainty can be implemented:

• process error (uncertainty in the dynamics of the modelled system, i.e. natural variability)
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• observation error (uncertainty about observed data used in the management procedure)

• estimation error (uncertainty in the estimation of parameters in the operating model and

management procedure)

• model error (uncertainty in the operating model and management procedure model struc-

ture, i.e. epistemic uncertainty)

• implementation error (uncertainty in the implementation of the management measures of

the management procedure)

The quantification of uncertainty is a crucial part of setting up an MSE because it can

influence the outcome. For MSEs based on quantitative stock assessments, the stock assessment

model often allows measuring uncertainty. In more data-limited situations, setting appropriate

uncertainty levels is more challenging due to the lack of empirical data. Therefore, it is even

more important to conduct robustness tests to evaluate the impact of the sources and magnitude

of uncertainty. In some cases, the uncertainty level can be rather arbitrary, as pointed out

by Carruthers et al. (2014) who based the probability distributions in their MSE on “expert

judgement”.

2.8 Criticism

Despite many benefits, the MSE approach has been drawing some criticism over time and still

has some opponents in the scientific community. A prominent example is a controversial article

published by Rochet and Rice (2009) that criticised MSE and already included the authors’

opinion in the title, asking whether MSE is “ignorance disguised as mathematics” and suggested

that the “use of complex mathematics and statistical tools risks giving users a false sense of

rigour” (Rochet & Rice, 2009, p. 55). However, less than a year later, a high-profile response

from MSE experts around the world (Butterworth et al., 2010) appeared to defend MSE and

clarify misunderstandings of the MSE principle by the former authors.

In stochastic MSEs, deterministic variables are replaced with probability distributions from

which values are drawn, e.g. through Monte Carlo simulations. Due to uncertainty in many pro-

cesses of the underlying dynamics, it is common practice to produce several model formulations,

e.g. in the form of alternative operating models or scenarios. Rochet and Rice (2009) argue that

using probabilistic approaches is paradoxical because this implies having more knowledge than
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for deterministic approaches. Additionally, typical risk evaluations are based on rare events at

the tails of probability distributions and therefore less reliable, e.g. the precautionary approach

is often formalised in a way that the probability of a stock falling below a limit reference point

should not exceed a specific risk threshold, such as 5%, whereas central tendencies are more

reliable. As an alternative to MSE, Rochet and Rice (2009) recommend alternative approaches

such as qualitative modelling with simple models, learning from post hoc analyses where man-

agement strategies have been implemented in reality, and checking their internal consistency

and how they would be implemented.

In their response, Butterworth et al. (2010) point out that the criticism of MSE is mostly

based on specific technical details that usually only appear when an MSE is poorly implemented

by ignoring best practices and misunderstandings of the scope of MSE. MSE can rather be

regarded as a holistic approach that encourages stakeholder participation. Using inappropriate

parameterisation and model formulation undoubtedly hampers the outcomes of an MSE. The

quantification of uncertainty in an MSE is challenging and should be considered carefully in

order to define realistic levels. It is good practice to describe and document the assumption of

an MSE (including uncertainty) and to justify those assumptions. The suggestion of Rochet and

Rice (2009) to use deterministic values instead of a probability distribution in case of uncertainty

is refuted by Butterworth et al. (2010). Butterworth et al. (2010) point out that deterministic

values are derived from empirical data (obtained through some sampling approach that also

entails uncertainty), and it would be wrong to assume a point estimate with absolute certainty;

therefore, including some uncertainty should be justified. One of the primary purposes of MSE is

to compare different management procedures, including potential trade-offs, and should always

include robustness tests of key assumptions.

There are no comprehensive alternatives to MSE available for testing and comparing man-

agement procedures. Some methods can complement MSE, but are usually already included in

the process. The only way to explore the impact of feedback between a management proced-

ure and the managed system is to conduct a feedback simulation loop. Post hoc analyses can

provide some ideas about the performance of management procedures; however, being able to

draw useful conclusions is rare. The performance of the implementation of management pro-

cedures in reality depends on various factors such as stock characteristics (life history, fishing

history, etc.), implementation, or enforcement of management measures, and it is nearly im-

possible to attribute good or poor performance of a management procedure to any such factor.
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Good management procedures are robust to uncertainty and provide default management op-

tions. The results of MSE should be periodically re-evaluated to make use of new information,

particularly if a stock moves out of the range of plausible conditions tested within an MSE.

Kraak et al. (2010) discuss scientists’ discomfort when asked to report concrete risk values

derived from MSE evaluations. Most MSEs are conducted as a response to requests from man-

agement bodies or stakeholders. These requests usually ask that management procedures meet

explicit risk thresholds, which can pressure scientists to report risk metrics with a precision

that cannot be sufficiently supported by considerations of various uncertainties. In contrast to

such MSE requests, purely academical MSEs in the peer-reviewed literature are commonly com-

parative, and different management procedures or management procedures subject to different

scenarios are compared. The suggestion of Kraak et al. (2010) to discredit MSEs in general and

management procedures derived from MSE exercises due to possibly poorly understood uncer-

tainties is likely irrational and poorly justified, in particular, because no viable alternatives are

presented. Furthermore, Kraak et al. (2010) recommend using simpler empirical management

procedures, but fail to acknowledge that the performance of empirical management procedures

cannot be predicted or evaluated without conducting feedback simulations.

In general, the criticism of MSE based on considerations of the risk of rare events (stock

collapse) can hardly be blamed on the MSE approach and is rather a criticism of how man-

agement bodies formulate requests to evaluate management procedures. For example, imposing

the restriction that a risk metric cannot exceed 5% is arbitrary in the same way that a specific

level of uncertainty is implemented. Such decisions might be considered a social choice based

on tolerances for risk and the expectation of reward.

It is highly questionable if the application of simpler modelling approaches provides more

certainty because, for the development of simpler models, even more assumptions and simpli-

fications have to be made, which are less likely to be able to model the dynamics observed in

reality.

For an MSE to be successful, it is good practice to learn from previous examples and follow

guidelines (e.g. ICES, 2013b, 2019g, 2020b) and best practices (Punt et al., 2016).
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2.9 Software

There are various software options for conducting MSEs, including software suites designed

explicitly for conducting MSEs as well as bespoke implementations. In the past, MSEs were

often coded in various programming or scripting languages for specific MSE exercises or reused

for similar MSEs. The main disadvantage of custom software is that only a very limited number

of people are working on the code and can easily read it. This can mean that systematic or

coding errors can be hidden in the code without being noticed and hindering peer review. Using

open-source MSE frameworks avoids such issues.

On an anecdotal note, MSE simulations were historically conducted with programming lan-

guages such as Fortran, considered to be suitable for heavy computational tasks in many scientific

fields at the time (Decyk et al., 2007; Mendez et al., 2014). Roel and De Oliveira (2007) used

a simulation framework in Fortran to evaluate harvest control rules for the European widely

distributed Western horse mackerel stock.

Some analytical stock assessment models allow their internal routines to be used as operating

models or even to run full MSEs, and a notable example is the integrated stock assessment

method Stock Synthesis (Methot & Wetzel, 2013).

Within the last 20 years or so, in fisheries science as well as in many other scientific fields,

there has been a tendency to move towards the R language (R Core Team, 2020). A popular

open-source software suite for modelling population dynamics in fisheries science is the Fisheries

Library in R (FLR, Kell et al., 2007). FLR is a product of several national and international

projects, most notably of the European Commission of the European Union. First developed

as an Excel spreadsheet-based tool at the Centre for Environment, Fisheries and Aquaculture

Science (Cefas, United Kingdom) in Lowestoft (J. De Oliveira and L. Kell, personal communic-

ation), FLR was then moved to the R programming language (R Core Team, 2020). The basis

of FLR is the “FLCore” R package which defines most data classes and generic methods and

follows a modular approach with a plethora of additional R packages for specific analyses, e.g.

“FLash” for the projection of a fish stock forward in time. FLR is particularly popular within

the ICES community, where it is used for stock assessments as well as MSEs.

Traditionally, MSEs with FLR were based on custom scripts for specific projects. Recently,

and driven by the assessment for all initiative (a4a), a standardised MSE framework for FLR

has been developed (Jardim et al., 2017). This framework is based on the FLR packages and

46



comprises a modular design with separate modules for observations, stock estimation, application

of a decision rule, implementation error, and projection. Following a standardised and modular

approach facilitates peer review and collaborations. A notable example where this FLR MSE

framework has been used is the evaluation of long-term management plans for several North Sea

gadoids (ICES, 2019h).

Although traditionally used for data-rich analyses, FLR has also been used for data-limited

analyses, and this PhD project is promoting its use further. An early attempt to simulate data-

limited operating models based purely on life-history parameters (primarily on the life-history

relationships of Gislason et al., 2008; Gislason et al., 2010) was part of a project of the Food and

Agriculture Organization (FAO) to evaluate data-poor methods (Rosenberg et al., 2014). The

same procedure was later used for testing a super ensemble of catch-only methods in a control

rule (Anderson et al., 2017; Walsh et al., 2018). Jardim et al. (2015) adapted this approach

and tested empirical data-limited (model-free) management procedures for a wide range of life

histories.

Recently, during the course of this PhD project, the procedure for generating operating mod-

els based on life-history parameters was further developed and formalised in the FLR package

“FLife”. The analyses described in Chapter 6 and published in Fischer et al. (2020) are possibly

the first peer-reviewed publication that used FLife to create operating models for an MSE. This

work was initially based on custom MSE subroutines, but due to the standardisation approach

of the FLR MSE framework, the MSE framework was modified to handle data-limited MSEs,

and the work was moved into the framework.

The main advantage of FLR over alternatives is that it provides a comprehensive software

ecosystem. The modular approach allows a high degree of flexibility, external methods (e.g.

stock assessment methods) can be incorporated, and FLR has an R interface familiar to many

fisheries scientists. Punt et al. (2016) in their MSE best practices paper recommend the use of

already tested generic software and specifically highlight FLR as a tool developed for MSE.

An emerging alternative to FLR is the data-limited toolkit (DLMtool; Carruthers & Hordyk,

2018) and its data-rich version, MSEtool (Huynh et al., 2020). Both tools follow many of

FLR’s pioneering principles of an MSE software suite, e.g. are written in R, use object-oriented

programming and define generic classes and methods. DLMtool is designed as a standalone R

package meant to facilitate running MSEs. Because it is a relatively new R package, it does

not have a community of active users as big as FLR’s. Furthermore, some of the functions for
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creating operating models and running MSE include default parameters and parameter ranges.

Such features allow inexperienced scientists to set up and run MSEs reasonably quickly. However,

this comes with the caveat that potential users might not fully understand the structure and

dynamics of the simulation, which in turn can provide a false sense of security in outcomes,

ignoring potentially arbitrary defaults. Due to its design as a single R package, the flexibility

is more restricted compared to FLR and, e.g. adding alternative management procedures or

statistics might require interventions from the original developers.

2.10 Alternatives

Finding viable alternatives to MSE is challenging because MSE is rather a framework to simulate

management procedures and simulation specifications can be tailored to the needs of the MSE

exercise. Furthermore, MSE is already the alternative to the best assessment paradigm.

A possible intermediate approach between the best assessment approach and MSE might be

to use model ensembles. In an ensemble approach, several assessment models are combined and

collectively used for management decisions. Model ensembles are, for example, used in climate or

weather modelling or by the International Pacific Halibut Commission (Stewart & Martell, 2015).

Some scientists advocate model ensembles to improve fisheries management advice (Jardim et

al., 2021) because more than one plausible hypothesis can be considered. However, ensemble

approaches require potentially subjective decisions for the selection of models as well as how

individual models are weighted.

On the other hand, following best practices for MSE (Punt et al., 2016) already includes

considerations of alternative hypotheses for generating operating models. Although ensemble

models are a step toward MSE, management advice based on ensembles is difficult to evaluate

in simulations because assessment model ensembles can have a much higher computational com-

plexity and therefore impair thorough simulation testing. Furthermore, ensemble approaches

rely on modelling approaches which might not be feasible for data-limited fisheries resources,

although examples of data-limited ensemble approaches exist (e.g. Rudd et al., 2019). Fur-

thermore, instead of reducing the complexity of management decisions, the ensemble increases

complexity, potentially impairing communication with stakeholders. The focus of this thesis

was on relatively simple empirical approaches to guide management decisions for data-limited

fisheries resources and consequently, stock assessment ensembles are not considered.
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MSEs can be complex and sometimes simplifications or shortcuts are favoured. For example,

this became evident at a recent ICES workshop on MSE guidelines (ICES, 2020b). In a data-rich

MSE with a management procedure based on a stock assessment model, a “full MSE” usually

includes the stock assessment model in the feedback loop of the simulation. In a shortcut MSE,

the assessment model is replaced by an assessment emulator, which takes the observations from

the operating model and adds uncertainty to these estimates. This approach can substantially

reduce the computational complexity of an MSE simulation. A further simplification would

be to remove the specification of the management procedure (with specified observations and

assessment model) altogether and only test a generic principle, e.g. a harvest control rule aiming

at a target such as FMSY. This approach was labelled “harvest control rule evaluation” by ICES

(2020b). While potentially useful for exploring generic strategies, these shortcuts do not allow a

thorough evaluation and definition of a management procedure and it might be argued that these

are not MSEs. Furthermore, such simplifications only make sense if stock assessment models

are used, which means that these shortcuts do not apply to empirical management procedures.

The only alternative to simulations to receive feedback on a management procedure would

be applying a management procedure to a real fish stock. However, experimental application of

a management procedure to a real fish stock is infeasible because of the possible damage to the

stock and the fishery, scientific standards for experiments cannot be upheld (controls, replicates,

and alternative trials are impossible once a management procedure has been implemented),

and such experiments would be ridiculously expensive to monitor (De Oliveira et al., 2009).

Furthermore, it would be nearly impossible to evaluate the performance of the management

procedure because the actual state of the stock is unknown and can only be estimated through

assessing the stock and because environmental factors might also cause changes to a stock.

2.11 Conclusion

The MSE approach is the state-of-the-art approach in fisheries science for developing and test-

ing candidate management procedures to ensure that these meet management objectives. Con-

sequently, MSE will be deployed as the primary method in this PhD project to develop empirical

management procedures for data-limited fisheries resources. Best practices will be followed to

avoid criticism and help acceptance of the work. Furthermore, extensive robustness tests will

be conducted. Due to limited data and models for such resources, initial simulation testing will
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be based on generically developed operating models covering a range of life histories. However,

later on, case-specific simulations will be conducted for selected case study stocks to verify the

outcomes of the generic simulations.
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Chapter 3

A review of empirical data-limited

management procedures
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3.1 Abstract

Management procedures (MPs) in fisheries management can broadly be grouped into model-

based MPs that deploy modelling approaches to set management measures and empirical MPs

that only rely on empirical data. A review of empirical MPs is presented. The most simple form

of an empirical MP is a constant catch MP. On the other hand, indicator adjusted MPs adapt

catch advice based on the information from an indicator, such as an index of abundance or the

mean catch length. Indicator adjusted MPs can be further categorised into four main types;

(i) stepwise adjustment, (ii) indicator trend, (iii) indicator target, and (iv) harvest control rule

type. Additional elements of empirical MPs can include options to restrict catch variability or

multipliers for additional precaution. Empirical MPs are usually tested by means of management

strategy evaluations, and their performance often depends on simulation characteristics. In

general, constant catch MPs yield less satisfactory performance compared to adaptive MPs.

Adaptive empirical MPs, when tuned to case-specific conditions, can exhibit good management

performance and match, or even exceed, much more complex model-based MPs.

3.2 Introduction

According to Rademeyer et al. (2007), management procedures (MPs) can be grouped into

model-based MPs and empirical MPs. In model-based MPs, population models are used to

assess fish stocks by gathering information about stock metrics such as stock size or fishing

pressure and stock status relative to predefined reference points such as maximum sustainable

yield (MSY) or unfished biomass. Depending on the model, such MPs require a substantial

amount of informative data, which are commonly unavailable for data-limited stocks. On the

other hand, empirical or model-free MPs do not rely on population models and are simply based

on available data, usually in the form of indicators such as an abundance index. It should be

noted that empirical MPs might not always use raw data but sometimes apply simple models,

for example, to smooth the output of an indicator (e.g. Hillary et al., 2016).

This chapter provides a systematic review of empirical MPs used in data-limited fisheries

management. The review was conducted systematically, and a record of the methodology for

searching and selecting literature is available in Appendix A.
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3.3 Empirical management procedures

The review presented here focuses on empirical MPs in data-limited situations, that is in situ-

ations where there might be fishery-independent indicators such as an abundance or biomass

index, or fishery-dependent indicators considered representative of a fish stock, such as CPUE

(catch per unit effort) indices or the mean catch length. The available data in these data-limited

situations might be enough for simple stock assessments, for example, biomass dynamic or simple

integrated assessment models. However, such models can be controversial due to their formu-

lation or underlying assumptions. Furthermore, their applicability might be impaired by short

time series, lack of contrast in data, model convergence issues, violations of model assumptions,

or because model fits do not meet minimum acceptance criteria. Therefore, using these mod-

els might provide a dangerously false sense of certainty about stock dynamics. Consequently,

this chapter only considers empirical MPs that do not use results of population models because

empirical MPs have wider applicability in data-limited situations.

Dowling et al. (2015a) conducted a review of empirical MPs for data-poor situations in

which there are even fewer data available and these are not part of this review. Dowling et al.

(2015a) also noted that there are numerous approaches worldwide; however, most of them are

case-specific without the development of generic guidance. Such data-poor empirical MPs use

indicators, and when multiple indicators are included, their combined information can either be

used sequentially, collectively, or with hierarchical approaches. Subsequent to analysing such

indicators, the information needs to feed into the creation of decision rules for management

purposes. For data-poor situations Dowling et al. (2015a) mention that this can be done by

(i) expert judgement, (ii) collection of more data, (iii) definition of overriding exemptions, and

(iv) the formulation of specific decision rules to adjust manageable quantities such as catch or

effort. Although empirical approaches are traditionally applied in data-limited situations, they

could also be considered for less data-limited stocks and might provide a simpler and cheaper

approach to fisheries management, as advocated for by Kelly and Codling (2006).

Generically, most empirical MPs can be written in the form

Cnew = Cref α (3.1)
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where Cnew is the new management measure, e.g. catch advice, Cref is a reference level, e.g. the

previous catch, and α is a multiplier scaling the reference level and is usually a function of one

or more empirical indicators (see e.g. Geromont & Butterworth, 2015a; Jardim et al., 2015).

Various proposed, tested and implemented empirical MPs exist, and this chapter is a proposal

to categorise them following a study of the literature and the considerations of Geromont (2014).

A useful overview of various control rule formulations, including empirical approaches, can be

found in Breen et al. (2003). Model-based data-limited MPs have already been extensively

reviewed, e.g. in Carruthers et al. (2014), Carruthers et al. (2016) or Wetzel and Punt (2011).

Furthermore, Dowling et al. (2015a, 2015b) provide a comprehensive review and guidelines for

data-poor MPs. However, their review lacks the inclusion of less data-poor, i.e. data-limited

cases, and does not detail available formulations of MPs and the guidelines are rather vague in

terms of application to real data.

3.4 Constant catch

The most simplistic empirical MP is to set a constant catch without any feedback. In Equation

(3.1), Cref then corresponds to a reference catch level. For example, this could be the average of

the catches in the five years prior to the implementation of the constant catch and the multiplier

α can be a scalar for scaling the reference catch level (Geromont & Butterworth, 2015a). Such a

constant catch can either be kept for the foreseeable future or, alternatively, reviewed periodically

and adjusted based on newly available catch values in recent years (Carruthers et al., 2014).

3.5 Indicator adjusted catch

Usually, in data-limited situations, some indicator representing the fish stock or the fishery is

available and can be used to adjust the catch advice. Such indicator adjusted catch MPs usually

follow the principle of Equation (3.1), where the reference catch Cref is set to the previous catch

value Cprev:

Cnew = Cprev α. (3.2)

3.5.1 Stepwise adjustment

Possibly the most rudimentary version of an indicator adjusted catch MP is the stepwise constant

catch MP, where the catch advice is “stepped” up or down depending on whether an indicator
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exceeds certain thresholds. Jardim et al. (2015) and Geromont and Butterworth (2015a) nearly

simultaneously proposed empirical MPs that follow this logic; however, Jardim et al. (2015)

refer to this MP as based on survey confidence intervals, whereas Geromont and Butterworth

(2015a) call it a stepwise constant catch MP. The two MPs do not necessarily look similar on

first consideration, but they follow the same principle and are reformulated here to show the

similarities between them.

Jardim et al. (2015) designed the empirical MP following Equation (3.2), where α is defined

depending on the recent indicator value I and conditional on upper (Iu) and lower (Il) reference

values:

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + δu, if I > Iu

1, if Il ≤ I ≤ Iu

1 − δl, if I < Il

(3.3)

with δu and δl defining the increase and decrease in the catch advice, which can be asymmetric.

Jardim et al. (2015) applied this to an abundance index and defined Iu and Il based on the

confidence intervals of the index so that a change in catch was advised when the index exceeds

a specific percentile of an assumed distribution of the time series of index values.

Geromont and Butterworth (2015a) formulated their MP as

Cnew =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Cprev + δCref, if I > Iu

Cprev, if Il ≤ I ≤ Iu

Cprev − δCref, if I < Il

, (3.4)

where the catch advice is increased from the previous catch Cprev by a proportion δ of a reference

catch level Cref if the indicator I exceeds an upper threshold Iu and decreased vice versa if the

indicator falls below a lower threshold Il. Note that the new catch advice is always based on

the previous catch advice. Therefore, in the first year of the implementation, the catch needs

to be defined manually, e.g. with Equation (3.1) as described in the constant catch MP above.

Geromont and Butterworth (2015a) proposed this constant catch MP with the mean catch length

as an indicator. The rule is intended to react only to stronger signals in the indicator (here, the

mean catch length, but it could also be applied to an abundance index) and therefore does not

react to small changes due to random noise.
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3.5.2 Indicator trend

Instead of adjusting the catch advice only in case an indicator exceeds a threshold, the trend of

an indicator can be used directly to adjust the catch advice. This MP follows Equation (3.2)

where α can be defined as

α = 1 + λs (3.5)

with the slope s from a linear or log-linear regression of an indicator for several recent years and

λ being an additional control parameter for the translation of the magnitude of change in the

indicator into the catch advice (Butterworth & Geromont, 2001; Campbell & Dowling, 2005;

Geromont & Butterworth, 2015a). The indicator used in the regression is usually an abundance

index (Cox & Kronlund, 2008; Doonan et al., 2015; Geromont & Butterworth, 2015a, 2015b;

Plagányi et al., 2018; Plagányi et al., 2019). Kurota (2005) and Kurota et al. (2010) describe an

MP where this indicator trend regression is used on an abundance index but as part of a more

complex MP and Campbell and Dowling (2005) describe another version where it is applied to

the effort (number of hooks in a swordfish fishery) instead of catch. Cox and Kronlund (2008)

devised an indicator trend rule that includes parameters weighting the influence of the previous

catch and the indicator trend.

The element reflecting the indicator trend (α in Equations 3.2 and 3.5) is not restricted to

a single index, but can also include several indices (S), each with a specific weighting (w), as in

Plagányi et al. (2018):

α =
∑︂
i∈S

wi (1 + λsi) (3.6)

The MP used by the Commission for the Conservation of Southern Bluefin Tuna (Hillary

et al., 2016) includes a version of the indicator trend following Equation (3.2) and replacing

Equation (3.5) with:

α =

⎧⎪⎪⎨⎪⎪⎩
1 − λ1 |s|γ , if s < 0

1 + λ2 s, if s ≥ 0
, (3.7)

where the control parameters λ1 and λ2 cause an asymmetric response depending on whether

the indicator is increasing or decreasing and γ is an additional asymmetry parameter. The MP
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of Equation (3.7) is conceptually an empirical MP. However, a simple model is used to combine

two independent indices into a single indicator (Hillary et al., 2016).

Alternatively, the trend in the indicator can be derived with a ratio by dividing an average of

recent values by the average of previous values. The International Council for the Exploration

of the Sea (ICES), for example, has been applying a “2 over 3” rule for ICES category 3 data-

limited stocks (stocks for which survey indices provide reliable indications of trends in stock

metrics):

α =
∑︁y−1

i=y−2 Ii/2∑︁y−3
i=y−5 Ii/3

, (3.8)

where I is a biomass index and y the assessment year (ICES, 2012b). This rule was later revisited

by Jardim et al. (2015).

Instead of averaging index values over several years as in Equation 3.8, Apostolaki and

Hillary (2009) suggested using the average of several year-to-year changes:

α =
y∑︂

i=y−N+1
wi (Ii/Ii−1) , (3.9)

where N is the number of years to use and w a weighting factor, e.g. based on index variability.

3.5.3 Indicator target

The values from an indicator can also be used to modify the catch advice in order to move the

stock towards a target reference value of the indicator. This can simply be done by defining α

from Equation (3.2) as:

α = Irecent/Itarget, (3.10)

where Irecent is the recent value of the indicator I and Itarget a target or reference value. If Irecent

is above Itarget, the catch advice is increased and if Irecent is below, the catch advice is decreased.

Jardim et al. (2015) used the mean length in the catch as an indicator and defined the

reference length based on simple life-history considerations.

Geromont and Butterworth (2015a) suggested a more complex formulation:
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Cnew =

⎧⎪⎪⎨⎪⎪⎩
0.5Cref

[︂
1 + Irecent−I0

Itarget−I0

]︂
, if Irecent ≥ I0

0.5Cref
[︂

Irecent
I0

]︂2
, if Irecent < I0

, (3.11)

where Cref is a predefined reference catch level and I0 another tuning parameter. Hoshino et al.

(2020) adapted this rule by adding additional parameters and applied it to effort instead of

catch. This formulation can be used with either mean catch length or an abundance index as

an indicator.

3.5.4 Harvest control rule type

For many data-rich fish stocks, harvest control rules (HCRs) are used for fisheries management

and often follow the form shown in Figure 3.1a.

In such HCRs, the fishing mortality (FHCR) is set depending on the size of an indicator,

usually spawning stock biomass (SSB). If the indicator is at or below a limit reference point

(Ilim), FHCR is set to 0 and if the indicator is at or above a trigger reference point (Itrigger),

FHCR is set to Ftarget, which could be FMSY. Between Ilim and Itrigger, the fishing mortality is

linearly interpolated.
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Figure 3.1: Conceptual harvest control rule (a), and application of this principle in Klaer et al.
(2012) in (b).

Management procedures in data-limited cases can follow a similar principle. Figure 3.1b

illustrates the HCR of Klaer et al. (2012). The fishing mortality used in the HCR (FHCR) is

58



derived from a perception of the current fishing mortality (Fcurrent):

FHCR =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ftarget, if Fcurrent ≤ Ftrigger

Ftarget
Fcurrent−Flim
Itrigger−Flim

, if Ftrigger < Fcurrent < Flim

0, if Fcurrent ≥ Flim

(3.12)

The actual fishing mortality is unknown; however, the mean catch length acts as a proxy

for it. A yield-per-recruit analysis is used to create a table that links mean catch length to

fishing mortality. The x-axis of Figure 3.1b is inverted compared to Figure 3.1a because a

higher fishing pressure correlates to a smaller mean catch length. Klaer et al. (2012) defined the

reference points based on assumed fishing mortalities that reduce the stock size to a proportion

of unfished biomass (20% for Flim, 40% for Ftrigger, and 48% for Ftarget). The new catch advice

is then set following the logic of Equation (3.1), where Cref is calculated as the moving average

of the catch over several years and the multiplier α defined as:

α = 1 − e−FHCR

1 − e−Fcurrent
. (3.13)

3.6 Other empirical management procedures

Apart from the generic MPs mentioned so far, there are other MPs using empirical indicators.

Most of them are, however, increasingly designed for specific fisheries and situations. Examples

are the decision rules for rock lobster that set catch limits based on recent CPUE, either with

discrete values from a lookup table or interpolations between specified values. Such rules are, for

example, used for rock lobster in South Australia (Punt et al., 2012) and New Zealand (Breen

et al., 2009).

3.7 Additional MP elements

The previously mentioned MPs set the catch advice based on information from indicators. Ad-

ditional elements to stabilise the change in catch advice or for further precaution can be imple-

mented. Catch constraints limit the variability of the catch advice and usually define that the

change in the new catch advice cannot exceed a certain percentage, such as 20%, compared to

the previous value (e.g. Geromont & Butterworth, 2015b).
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The precaution of empirical MPs can be increased by including a multiplier < 1, which

reduces the catch advice. Within ICES, the current framework for providing catch advice for

data-limited stocks includes a precautionary buffer that reduces the catch advice by 20% (i.e.

a multiplier of 0.8) if the stock status is estimated to be poor based on MSY proxy methods,

or if there is no knowledge about the stock status (ICES, 2019a). Once this buffer has been

applied, it can only be considered again after three years. The Australian tier system includes

considerations of precautionary multipliers to reduce catch advice, and the reductions should be

larger the more data-limited the stocks are (Department of Agriculture and Water Resources,

2018).

3.8 Discussion of empirical management procedures

The various types of empirical MPs have different properties and are designed to react to specific

changes in a fish stock in order to provide management advice. The usual approach to evaluating

MPs is to conduct an MSE and compare the performance of the MPs by means of performance

metrics over a projected period, such as stock status in relation to reference points, risk of the

stock falling below limit reference values, catch and catch variability (Carruthers et al., 2016). A

direct comparison of MPs is usually only possible when they are compared within the same study

because studies differ in their set-up of operating models (stocks and their parameterisations,

fishing histories, adoption of process and observation noise), implementation details (projection

periods, the frequency of setting management measures) and how the performance of MPs is

measured. Therefore, the discussion of empirical MPs here mainly compares their performance

within simulation studies; however, general conclusions are indicated as well. The discussion

focuses on scientific studies on MPs and a comparison of different approaches. These studies

are often generic and not always for direct application in specific regions. The process of MSE

development and interactions with stakeholders is not part of this discussion.

The use of the terms management procedure and control rule is sometimes stretched beyond

their original definition in the literature. An example is Sun et al. (2018) who evaluated “harvest

control rules” that purely limit the minimum or maximum length of individuals caught in the

fishery. While it is perfectly valid and sensible to use such technical measures, they might

rather be considered conservation measures because they do not provide management advice

considering recent stock developments. The other extreme are highly complex MPs, such as the
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one described by Licandeo et al. (2020). Their MP uses an indicator trend control principle, but

combines several of them, uses various data sources, and includes several additional components

such as a penalty, cap, split into different species, and a small fish protocol. This led to such

a complex formulation (which required case-specific tuning for its parameters) that even for

an expert audience, comprehension might be impaired. Furthermore, the usual benefit that

empirical MPs can be communicated easily to various stakeholders might be lost.

3.8.1 Constant catch

The simplest data-limited MP is to set a constant catch and possibly review the catch level peri-

odically. One unique advantage of constant catch MPs is that the inter-annual catch variability

is zero and this MP, therefore, provides stability for fishers. However, this can easily change

when a stock is declining, effort limitations reduce the catch that can be taken due to fisheries

regulations, or because effort increases are not cost-effective.

Occasionally, constant catch MPs have been included in simulations comparing different

data-limited MPs (Carruthers et al., 2014; Geromont & Butterworth, 2015a). The general

verdict of these simulations is that constant catch MPs deliver only poor performance and

are outperformed by MPs that dynamically adjust catch to account for changes in the stock.

Nevertheless, specific parameterisations of constant catch MPs can perform surprisingly well if

the stocks are in a good condition prior to the implementation of the MP and the catch level is

appropriate. In a simulation, different constant catch values can be tested, and an appropriate

catch level (e.g. MSY) can be determined. For depleted stocks, it might be possible to identify

a constant catch that allows the stock to recover; however, such a catch is likely to be low.

Consequently, the constant catch MP approach is impractical for application to real fish

stocks because the condition of data-limited stocks and appropriate catch levels are unknown.

Despite their limitations, versions of the constant catch MP (third highest or median of

landings in the past ten years) have been applied in the US (SAFMC, 2011; Carruthers et al.,

2014).

3.8.2 Indicator adjusted catch

Geromont and Butterworth (2015a) tested a range of empirical MPs, comprising constant catch,

indicator trend, and indicator target adjusted rules, using length and CPUE indices. In their

simulations, MPs that dynamically adjusted the catch performed better with higher yield and
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lower risk of stock depletion than a constant catch MP. This outcome is not unexpected because

a constant catch MP has no mechanism to adapt to changes in the population. It might work

reasonably well if the stock is in a good state prior to the first implementation of the MP and the

catch level is appropriate. Constant catch MPs have the lowest possible catch variability (i.e.

0), but other performance metrics depend on the stock status and exploitation and reducing

catch variability is seldom the only priority in fisheries management. Regarding the rules that

adjust the catch based on indicators, Geromont and Butterworth (2015a) found that MPs that

include only catch data (inclusive of mean catch length) are outperformed by less data-limited

MPs that can make use of an abundance index.

In general, Geromont and Butterworth (2015a) stated that even their more data-limited

MPs performed surprisingly well. However, this conclusion comes with several caveats due to

the specification of the simulations. For example, the operating models for this simulation

were not necessarily realistic and did not represent specific stocks or species. Instead, each

operating model represented a range of life histories, depletion states and productivity levels.

Additionally, the parameterisations of the MPs are almost impossible to implement in reality.

The MPs were tuned to achieve specific targets, which were defined as reaching 1.2BMSY after a

projection period of 10 years and maximising yield while considering a risk trade-off. The tuning

was mainly done by selecting a reference catch level in the first year of the implementation of

the MP. This reference level is dependent on the previous stock status and exploitation and

can, therefore, easily be derived in a simulation. However, in reality, the condition of data-

limited stocks is unknown and, consequently, the reference catch cannot be set in the same

way as for a simulation. Additionally, Geromont and Butterworth (2015a) focused on meeting

performance criteria after 10 years and such a short projection cannot necessarily guarantee

long-term sustainable management.

Geromont and Butterworth (2015b) revisited some of their MPs (MPs with an abundance

index as an indicator) and tested them with a hindcast for several real stocks, based on the

results of analytical stock assessments, and found them to perform comparably to data-rich

MPs.

Cox and Kronlund (2008) found that their indicator trend adjusted MP performed reasonably

well and close to model-based MPs for sablefish, but only if the parameters of the rule were set

appropriately. Furthermore, they note the danger of hyperstability in fishery-dependent indices.
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Jardim et al. (2015) compared the performance of three empirical indicator MPs; (1) an

indicator trend MP based on a biomass index, (2) a stepwise adjustment MP based on the

confidence intervals of a biomass index, and (3) an indicator target MP using the mean catch

length and a length-based proxy for FMSY. These MPs were tested in an MSE for 50 generic

fish stocks and two fishing histories (developing fishery and overexploited). Jardim et al. (2015)

found that the indicator trend rule could not recover depleted stocks, kept them around their

original depletion level and caused high biological risks. The other two MPs showed better

performance, with the length-based indicator target MP recovering many stocks (although some

collapsed) and the stepwise adjustment MP successfully recovering all stocks.

The general conclusion of Jardim et al. (2015) would be to assume that the stepwise adjust-

ment MP outperformed the other two. However, for the stepwise adjustment MP to be able to

recover stocks, it had to be modified so that it included asymmetric confidence intervals and

asymmetric gain/loss terms (i.e. the catch was reduced more when the MP indicated a decline

in the stock compared to an increase of the same magnitude). The specific reference values for

the confidence intervals and the gain/loss terms were a result of tuning the MP and are specific

to the simulated conditions, including the set-up of the operating models, depletion and fishing

history, levels of process and observations noise, etc. Therefore, it would be premature to put

the stepwise adjustment MP forward and neglect the other two MPs without further investiga-

tion. The indicator trend and target rules might not have performed equally well in this specific

simulation; however, they are much more generic and simpler to apply without the requirement

of case-specific tuning exercises.

Carruthers et al. (2016) carried out an extensive MSE evaluation of data-limited MPs, in-

cluding many of the empirical indicator MPs previously tested in Geromont and Butterworth

(2015a, constant catch, stepwise adjustment, indicator trend and target MPs) and compared

their performance with less data-limited MPs using derivatives of surplus production or analyt-

ical stock assessments. As previously noted (Geromont & Butterworth, 2015a), the performance

of empirical indicator MPs depends on their specific parameterisation, and MPs that dynamic-

ally adjust catch perform better than those that do not. However, many of the indicator trend

and target MPs were able to recover initially depleted stocks (SSB < BMSY/2) and produced

results similar to more complex model-based MPs, but were often conservative and delivered a

low yield.
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Another finding of Carruthers et al. (2016) was that the empirical indicator MPs often out-

perform simple model-based approaches such as DCAC (Depletion Corrected Average Catch;

MacCall, 2009), particularly at low stock sizes, and are less susceptible to observation bias. Al-

though comprehensive, the simulation exercise of Carruthers et al. (2016) offers limited guidance

for the application of data-limited empirical indicator based MPs because the results, as shown

previously and discussed above, do not favour specific MPs. It is pointed out again that the

suitability of an MP is dependent on the life history and condition of a stock, and, importantly,

on the specific parameterisation of the MP, which is difficult to obtain in data-limited situations.

Much of the analysis of Carruthers et al. (2016) was repeated for Caribbean stocks (Sagarese

et al., 2018) and stocks in the Gulf of Mexico (Sagarese et al., 2019), by testing the same

empirical MPs with the same simulation framework. Outcomes were similar and indicated that

adaptive MPs outperform constant catch scenarios, and could be considered for application.

A direct comparison of indicator trend and target rules is challenging because outcomes

depend on simulation conditions and performance metrics. Hoshino et al. (2020) compared

trend and target type rules for tropical tunas (skipjack and yellowfin tuna) and expressed a

slight preference for target-based rules when considering biomass related objectives, but noted

that the difficulty of setting target reference values in data-limited situations reduced their

applicability.

Prince et al. (2011) developed a full framework as a decision tree around an indicator (CPUE)

adjusted catch for the Australian longline fishery. The initial catch advice is set by adapting

the previous catch advice and moving the current CPUE towards a target CPUE. Additional

steps in the decision tree consider specific components of the monitored stocks (recruits, prime,

old) and can modify the initial catch advice. Although the application of the framework relies

only on simple empirical data, it does not entirely follow the empirical MP principles because

reference levels and qualitative stock evaluations make use of the spawning potential ratio, which

essentially requires a simple stock assessment model. Nevertheless, simulating testing of this

framework showed that it led to precautionary management, and was subsequently implemented

for the Australian eastern tuna and billfish fishery.

The framework of Prince et al. (2011) makes use of possibly divergent trends in different

demographic parts of a population by a post hoc modification of an initial catch advice. An

alternative is to include different elements directly into a control rule, such as the explicit
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inclusion of a recruitment index in Plagányi et al. (2018) and Plagányi et al. (2019) to account

for recruitment variability.

3.8.3 Harvest control rule type

The definition of the HCR type MP of Klaer et al. (2012) is stretching the definition of an

empirical MP. Although the application of the MP requires only empirical data (mean catch

length), prior to its first implementation, a yield-per-recruit model needs to be run to link mean

catch length and fishing mortality. For this model, various life-history parameters, such as

von Bertalanffy growth parameters, natural mortality, maximum age, and assumptions about

selectivity are necessary, which are more data than usually available for many data-limited

stocks. Klaer et al. (2012) tested this MP in an MSE with three data-rich stocks and found that

its performance was acceptable, although dependent on the depletion of the stocks prior to the

application, and susceptible to misspecifications of model parameters (e.g. natural mortality)

and uncertainty. Uncertainty for the catch length was implemented with a low coefficient of

variation of around 0.1 and a robustness test (halving and doubling) of the uncertainty led

to substantial changes of the MP’s performance. Another issue this MP has in common with

many other data-limited MPs is that the new catch advice is based on a reference catch. Klaer

et al. (2012) calculated this reference catch based on several years depending on the longevity

of species (maximum age minus age at 50% selectivity), with more years for longer-lived stocks.

For one stock, jackass morwong, an average of more than 20 years is used, which will likely

remove any shorter-term trends. Although it might be beneficial to link the reference catch to

life-history traits, using averages over too many years could be considered excessive.

The use of limit, trigger, and target reference levels is an advantage; however, their definition

as a constant proportion of unfished biomass irrespective of the stock is somewhat arbitrary.

Klaer et al. (2012) based the reference levels on the Australian Commonwealth fisheries harvest

strategy policy (Department of Agriculture and Water Resources, 2018), which specifies the

target stock level as 48% of unfished biomass as a generic proxy for maximum economic yield.

Using species-specific reference values, such as MSY, might improve the performance of the

framework.

Mean catch length can be used as an indicator for the exploitation of a fish stock; however,

its use as the sole indicator is likely not to work in all cases sufficiently. The translation of

changes in fishing mortality into mean catch length can have a substantial time lag.
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3.8.4 Additional elements

Empirical MPs provide recommendations for setting catch advice based on specific rules and

parameterisations, and when unfiltered, this can lead to large fluctuations in catch advice. This

is particularly pronounced if the underlying data are noisy or uncertain. Therefore, additional

elements to increase stability and precaution can be required.

Catch constraints limit the variability in catch advice and, thereby, avoid large changes.

Limiting catch changes can provide stability for the fishing industry and allow forward plan-

ning. However, such constraints can also negatively impact fish stocks because steep declines in

stock biomass or unnoticed stock collapses are not translated directly into the fishery, possibly

deteriorating the stock condition even further. The ICES advice framework does not generally

include catch constraints for data-rich stocks (unless they are defined in management plans for

specific stocks); however, for data-limited stocks, there is an “uncertainty cap”, limiting the

change in catch advice to no more than 20% (ICES, 2019a).

To increase the precaution of empirical MPs, multipliers < 1 can be added. The 2012 ICES

framework for category 3 data-limited stocks (ICES, 2012b) deploys an indicator trend MP (the

“2 over 3” rule in Equation 3.8) with a precautionary buffer defined as a multiplier of m = 0.8

(ICES, 2019a). This framework is described in detail in Chapter 4. The continuous application

of such a multiplier to an empirical MP can lead to a continuous reduction of catch advice

unless the indicator trend indicates an increase in the catch advice of at least 1/0.8 = 1.25.

ICES ameliorates this downward spiral by restricting its use to only once every three years and

by making the application conditional on perceived stock status.

The situation is slightly different if the MP includes a target such as the rule defined in

Equations (3.2) and (3.10):

Cnew = Cprev
Irecent
Itarget

m, (3.14)

where conceptually the multiplier can be included in the target value as

I ′
target = Itarget

m
, (3.15)

which then leads to
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Cnew = Cprev
Irecent
I ′

target
. (3.16)

From this formulation, it is clear that the multiplier simply increases the target value, i.e.

makes it more precautionary, and avoids the perception of a downward spiral of catch reductions.

3.8.5 Other empirical management procedures

The study of Pomarede et al. (2010) includes an empirical MP based on a fisheries-independent

biomass index. However, this MP is rather suitable for data-rich situations because it was

designed to be used on absolute biomass estimates (from an acoustic survey or a population

model) and was therefore not directly relevant for the review of data-limited empirical MPs in

this chapter. Nevertheless, the MP is potentially interesting because the design differs substan-

tially from the other empirical MPs mentioned so far. Pomarede et al. (2010) used the signal

from a biomass index but defined a control rule based on the principle of a PID (proportional,

integral, derivative) controller, i.e. the catch was adjusted depending on different properties

of the index time series. PID controllers are frequently used to control systems in industrial

settings. Applying the PID principle to fisheries management required case-specific optimisa-

tion and did not lead to generic control rule configurations. Although Pomarede et al. (2010)

managed to increase the catch compared to alternative management approaches, this came at

the cost of increasing the risk of stock collapses.

3.8.6 Application of empirical management procedures

So far, most of the discussion dealt with the concept of empirical MPs and their performance in

simulation testing via MSE. Nonetheless, empirical MPs have been and are still being deployed

in various fisheries around the world, and a few notable examples are mentioned here.

An indicator trend MP based on a CPUE index following Equations (3.2) and (3.5) has been

applied to Namibian hake (Butterworth & Geromont, 2001). As described above and detailed

in Chapter 4, ICES applies an indicator trend MP based on a biomass index to category 3

data-limited stocks (ICES, 2019a).

In Australia, a four-tier system has been implemented since 2005 (Smith et al., 2008), where

tier 4 applies to data-limited stocks for which usually only fishery dependent data exist. The

tier 4 harvest control rule was originally an indicator trend rule (following Equations 3.2 and
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3.5) using fishery dependent CPUE as the index. This rule was later changed to an indicator

target rule, where the implicit target is the maximum economic yield (defined as 48% of unfished

biomass, CSIRO, 2009). Because these tier 4 stocks are data-limited and, therefore, current and

unfished biomass are unknown, the indicator target is only a simple approximation and does

not necessarily reflect maximum economic yield. For additional precaution, a multiplier < 1 is

applied to derive a recommended biological catch, where the multiplier is set depending on the

data limitations with smaller values for more data-limited tiers. CSIRO (2009) recommended

a multiplier of 0.75 for tier 4 in the absence of better information. Some deviations to these

rules are possible and, for example, O’Neill et al. (2010) proposed a control rule that combines

stepwise adjustment and indicator trend principles for Australian spanner crab.

3.9 Conclusion

There is a plethora of possible empirical MPs and parameterisations. Some of them have been

extensively tested and compared in simulations. However, the outcomes of simulations and

comparisons can largely only be considered within the same study due to specific simulated

conditions. So far, no clear winner has emerged, and this is unlikely to happen. In real-life

situations, there is often not much choice between alternative MPs due to data limitations.

Indicator target type MPs might be considered as the most desirable solutions to manage

fisheries for data-limited stocks. Their applicability and performance are, however, dependent

on the existence of an appropriate target metric. For data-limited stocks, the definition of target

levels is notoriously difficult, if not impossible, and often only possible by making assumptions

and crude approximations. Furthermore, they entail the risk of misspecification of target levels,

which can have a severely detrimental impact on the stocks they are meant to sustain. Indicator

trend type MPs do not need the definition of a reference target level. Nonetheless, their applic-

ation is not always straightforward, because changes in the indicator do not necessarily warrant

a direct translation into catch advice, e.g. because of the life history of the stock or because

the indicator trend could be driven by noise rather than a signal from stock dynamics. The

definition of empirical MPs, as described so far, usually comprises one major component, which

is responsible for the setting or changing of the catch advice. This component is sometimes

complemented with additional elements for extra stability or precaution.

68



The first empirical MP explored in this thesis is the “rfb rule”, which includes both a trend

(from a biomass index) and a target (for mean catch length) element (Chapters 6, 7, and 8).

The rfb rule was chosen because it takes the current ICES approach for category 3 stocks and

improves on it by considering additional elements. The second empirical MP uses a target, but

is based on the principle of a harvest rate (Chapter 9). The harvest rate rule was chosen as an

alternative approach to the rfb rule because it does not rely on adjusting the previous advice

value but instead sets catch independently based on a target harvest rate. These two empirical

MPs were first developed with generic operating models, and then the generic MPs were also

evaluated with case-specific simulations for three case study stocks (Chapter 11).
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Chapter 4

Data-limited fisheries management

and the International Council for the

Exploration of the Sea

71



4.1 Abstract

The International Council for the Exploration of the Sea (ICES) provides scientific advice on

fishing opportunities for many fish stocks in the Northeast Atlantic. ICES classifies fish stocks

into six categories depending on data availability. Category 1 is the most data-rich and allows

the application of potentially complex stock assessments, and short-term forecasts can be used to

provide catch advice following maximum sustainable yield principles. The subsequent categories

encompass increasingly data-limited fish stocks, and alternative methods are used to provide

catch advice. Category 3 data-limited stocks are stocks for which an indicator of stock size

exists and are the main focus of this PhD project. This category was chosen because it includes

the majority of ICES data-limited stocks. ICES has used a data-limited advice framework since

2012, and for most category 3 stocks, catch advice is based on a simple status quo catch rule

following the perceived stock trend, the “2 over 3” rule. Additional elements are meant to

reduce the catch advice when the stock is considered to be in an unfavourable condition (the

precautionary buffer) and limit changes in the catch advice (the uncertainty cap). However,

this rule does not include any target and can, at best, aim to keep a stock at its status quo.

Consequently, precautionary exploitation is not guaranteed.

4.2 Introduction

In European waters, the management of fishing resources is mainly governed by the Common

Fisheries Policy of the European Union (EU; EU, 2013) and other national legislation for non-

EU countries. The International Council for the Exploration of the Sea (ICES) provides the

scientific basis for the advice on fishing opportunities (ICES, 2019a) for many fish stocks in the

Northeast Atlantic. The process within ICES involves expert groups for drafting the advice,

which is then passed on to an advice drafting group and finalised by the ICES Advisory Com-

mittee. The result of this process is a series of advice sheets for specific stocks which give one

or more catch options, and which are then used, for example, by the European Union’s Agri-

culture and Fisheries Council to set binding catch limits, expressed as Total Allowable Catches

(TACs), the primary means of fisheries management in the EU. For some stocks that extend

into non-EU member states’ territorial waters, such as Norway, Iceland, or the United Kingdom,

bilateral or multilateral consultations and agreements are in place. Importantly, ICES scientific
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recommendations are decoupled from international borders and advice on fishing opportunities

is based on biological fish stock units.

4.3 The historical approach for data-limited fish stocks in ICES

The following sections give a short overview of how data-limited fish stocks were treated within

ICES for advice purposes. Here, only the period after around 2000 is considered because going

further back in time makes the differentiation between data-limited and non-data-limited stocks

increasingly difficult. Methods deployed decades ago, might at that time have been considered

as state-of-the-art quantitative models but could nowadays instead qualify as data-limited ap-

proaches.

Historically, there was no specific definition of what comprised data-limited stocks within

ICES, and ICES mainly provided advice for fish stocks for which a quantitative assessment

was available, i.e. for data-rich stocks. However, there were a few stocks without quantitative

assessments, but for which ICES was nevertheless asked to provide advice, and these would later

be considered data-limited. Back then, the ICES advice for these stocks was mainly based on

precautionary principles with limit and threshold reference points, when these were available

(ICES, 2009).

In the years 2010-2012, prior to the implementation of the data-limited framework, ICES

advice for stocks without analytical assessment was based on the following simple table (ICES,

2010, p. 8):

No Overfishing Overfishing or Unknown Ex-
ploitation Status

Decreasing stock trend Reduce catch from recent level
at rate of stock decrease

Reduce catch from recent level
at rate greater than the rate of
stock decrease

Stable stock trend Maintain catch at recent level Reduce catch from recent level
Increasing stock trend Increase catch from recent level

at rate of stock increase
Maintain catch at recent level

This table provided only incomplete guidance depending on a stock trend and overfishing

status. Subsequently, in 2011, the table was appended, and the recommendation for stocks for

which no stock trend was available and exploitation status was unknown was to maintain status

quo, which meant that catches should not be allowed to increase (ICES, 2011a). Again, the

table provided only vague guidance about how to give catch advice based on the stock trend
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and overfishing status without defining exactly how to determine these stock characteristics.

Because the options in this table take only discrete representations of the stock characteristics,

they are discontinuous, and the outcome of applying this table is potentially subjective.

4.4 The current data-limited approach in ICES

Since 2012, ICES fish stocks have been classified into six categories depending on data availability

and assessment methodology (ICES, 2012b, pp. 4-5):

Category 1; data-rich stocks (quantitative assessments)

These are the stocks that are not considered data-limited and this category includes

stocks with full analytical assessments and forecasts as well as stocks with quantit-

ative assessments based on production models.

Category 2; stocks with analytical assessments and forecasts that are only

treated qualitatively

This category includes stocks with quantitative assessments and forecasts which for

a variety of reasons are merely indicative of trends in fishing mortality, recruitment,

and biomass.

Category 3; stocks for which survey-based assessments indicate trends

This category includes stocks for which survey indices (or other indicators of stock

size such as reliable fishery-dependent indices; e.g. lpue, cpue, and mean length in

the catch) are available that provide reliable indications of trends in stock metrics

such as mortality, recruitment, and biomass.

Category 4; stocks for which reliable catch data are available

This category includes stocks for which a time-series of catch can be used to approx-

imate MSY.

Category 5; data-poor stocks

This category includes stocks for which only landings data are available.

Category 6; negligible landings stocks and stocks caught in minor amounts

as bycatch
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This category includes stocks where landings are negligible compared with discards.

It also includes stocks that are part of stock complexes and are primarily caught as

bycatch species in other targeted fisheries. The development of indicators may be

most appropriate to such stocks.

The larger the number of the category, the more data-limited the stocks are, ranging from

data-rich, i.e. not data-limited, for stocks in category 1 to data-poor stocks in category 6. In

general, the stocks in categories 3-6 can be described as data-limited, although there are cases

where category 1 stocks have been temporarily downgraded to category 3 while assessment or

data problems are resolved. Depending on the stock category, ICES applies different method-

ologies to provide advice on fishing opportunities. This categorisation was initially developed

in 2012 at the first Workshop on the Development of Assessments based on LIFE history traits

and Exploitation Characteristics (WKLIFE) with a total of seven categories, but subsequently,

after review, narrowed down to the six categories presented above (ICES, 2012d). Previously,

there was no specific categorisation and most stocks for which ICES provided advice were data-

rich stocks with analytical assessments and forecast, with all other stocks considered data-poor.

However, for some of these “data-poor” stocks, there were more data available than for others,

and the idea behind the new categorisation was that it allowed the development and application

of methods for data-limited stocks to provide sound scientific advice.

According to WKLIFE (ICES, 2012d), of more than 160 stocks for which ICES provided

advice in 2012, 122 were data-limited, i.e. category 3-6.

If there are sufficient data and knowledge available (i.e. for stocks in categories 1 and

2), ICES gives advice based on the Maximum Sustainable Yield (MSY) approach, including

precautionary considerations, or alternatively, if a management plan exists, has been agreed on

and evaluated, the advice is based on such a plan (ICES, 2019a). For stocks in categories 3-6,

data availability is generally too scarce for fully analytical assessment, and the ICES advice is

based on a precautionary approach (ICES, 2019a).

In 2012, after developing the stock categorisation, ICES published a guidelines document

which set out the methods to be applied depending on the stock categories (ICES, 2012b). These

guidelines have been used since then, but several additions and clarifications have been added

over the years. The following section provides a short overview of the available methodologies.

For stocks in category 1, the MSY approach is applied. This is achieved by targeting a

fishing mortality (F ), which gives the maximised long-term sustainable yield. For these stocks,
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fully analytical assessments are conducted which estimate F and spawning stock biomass (SSB)

and, subsequently, a short-term forecast is performed to convert the target F into a catch value.

The models applied are usually age-structured stock assessment models or age-aggregated sur-

plus production models, making use of fishery-dependent (e.g. catch) and independent (survey

indices) data. The MSY approach requires the definition of reference points. The target fishing

mortality is FMSY, if the stock size is at or above the biomass reference point MSYBtrigger.

If the stock is estimated to be below this point, the target fishing mortality is reduced by

SSB/MSYBtrigger, i.e. by multiplying FMSY with the current stock size divided by MSYBtrigger.

Should the stock not be able to recover above a biomass limit reference point below which there

is a high risk of recruitment impairment, Blim, in the short-term forecast, further reductions or

even zero catch can be advised.

Category 2 is intended for stocks that have quantitative assessments but essentially due

to model or data issues, the assessment results are only trusted in terms of relative values.

For these stocks, the same methods as in category 1 are deployed, and the MSY approach is

followed; however, more conservative reference points such as F0.1 instead of FMSY can be used.

This category has hardly been used. In 2012, 5 out of 248 stocks for which ICES provided advice

were in this category (ICES, 2013c) and in more recent years, the number has even decreased

further. In the years 2017-2019, out of the released advice for stocks, only one stock was in

category 2 respectively, sardine in the Bay of Biscay in 2017 and 2018, and the beaked redfish

stock in Iceland and Faroe grounds, North of Azores, and East of Greenland in 2019 (ICES,

2019b).

Category 3 might be considered the most important category of the data-limited framework

in terms of the number of stocks allocated. According to the ICES stock assessment database

(ICES, 2022a), ICES provided advice for 179 stocks in 2021, of which 80 were considered data-

limited, and the majority of these (55) were in category 3. The total number of ICES category

3 stocks is likely higher because, for some of these stocks, advice is provided for more than

one year (usually two years) until new advice is released. For this category, an age-aggregated

abundance index time series, preferably a biomass index, and the previous catch or advice

values are required. Several methods are available for this category. The most common is the

survey-adjusted status quo catch rule which has the form:

Ay+1 = Acurrent α, (4.1)
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where the new catch advice Ay+1 is calculated based on the recent advice value (or catch)

Acurrent and the multiplier:

α =
∑︁y−1

i=y−x Ii/x∑︁y−x−1
i=y−z Ii/(z − x)

. (4.2)

Here, I is the survey index and y the year. The parameters x and z define the years used

to compute averages of the survey index. The default values are x = 2, and z = 5, i.e. α is

calculated from the survey index as the average of the last two years, divided by the average

of the preceding three years. Within ICES, this rule is commonly called the “2 over 3” rule,

referring to the number of years used in the numerator and denominator.

The “2 over 3 rule” is the commonly used method for category 3 stocks. There are extensions

and alternative methods, which rely on additional information. These methods have been defined

in the original guidelines (ICES, 2012b) but have been rarely or never implemented. If more

information is available, such as estimates or proxies of SSB and F and the reference points

MSYBtrigger and FMSY, the rule can be extended to:

Ay+1 = Acurrent α β, (4.3)

with α from Equation (4.2) and

β =
(︄

Ftarget
FSQ

)︄
, (4.4)

where Ftarget is the target fishing mortality, usually a proxy for FMSY (e.g. F0.1) or a transition

towards it, and FSQ the current estimate of fishing mortality. If SSB and F are estimated to be

above reference points, α is set to 1, if SSB is above but F at or below reference points, β is set

to 1, and lastly, if SSB is below the reference point, the target fishing mortality (Fy+1) is reduced

in the same way as for category 1 stocks (with appropriate proxies for SSB and MSY Btrigger,

based on the index used; see above).

A third alternative for category 3 stocks sets a reference catch rate from a historical reference

period (one during which the survey index has been generally stable or increasing) as the catch

C divided by the survey index I from this period:

Fproxy = Cref
Iref

. (4.5)
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The catch advice is then based on this catch rate by using the recent survey index value:

Ay+1 = IrecentFproxy. (4.6)

This method has hardly been used and in 2019 was only applied to two stocks; blue ling and

greater silver smelt in East Greenland and Icelandic grounds (ICES, 2019b).

For stocks in category 4, the primary method used is the Depletion Corrected Average

Catch (DCAC, MacCall, 2009). DCAC is a catch-only method, which returns a catch value as

an approximation of MSY yield. The advice for category 4 stocks is this DCAC catch value or

a stepwise approach towards it. An alternative is to use a catch curve analysis, if more data

are available (e.g. age- or length-disaggregated catch numbers) to estimate current F and a

proxy for FMSY. The advice would then be calculated as Ay+1 = Acurrentβ, with β as defined in

Equation (4.4) for category 3. Under category 4, sedentary species (e.g. Norway lobster) have

their own approach where data (e.g. density, mean weights, discard rates) from neighbouring

areas can be borrowed.

The remaining two categories, category 5 and category 6, share common methods due

to severe data limitations. For these stocks, stock levels, F and reference points are commonly

entirely unknown, and the catch advice is simply set to a previous advice value leading to a

constant catch advice. Another option is to perform a risk assessment with a productivity and

susceptibility analysis (PSA) with the aim of promoting biodiversity, although this approach

has never been applied for advice purposes (ICES, 2019b).

There are two additional elements for the methods described above. For stocks in categories

2-6, an uncertainty cap of 20% applies. This uncertainty cap is a catch constraint, limiting the

interannual change in the advice so that the new advice cannot be more than 20% above or

less than 20% below the previous advice. The uncertainty cap is meant to protect against large

changes in the advice caused by noise in the data. Furthermore, a precautionary buffer (PA

buffer) can be applied, reducing the advice value by 20%, if the stock is estimated or thought

to be in an unfavourable state, i.e. low biomass or high fishing mortality. However, there were

originally no concrete specifications on how to assess stocks status, exemption criteria, or how

frequently and long the buffer should be applied. Later simulation work at the ICES WKLIFE

workshops led to refinements of the application of the PA buffer (ICES, 2017d). If the stocks

are thought to be very low, recovery plans or zero catch advice can be issued (ICES, 2012b).
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The original idea behind this framework (ICES, 2012b) with different methods is that it

should define a precautionary approach and that for more data-limited stocks, more conservative

reference points in combination with a further margin of precaution are used. However, in reality,

ICES (2012b) is more a method catalogue which does not ensure more precaution in case of more

data limitations.

The ICES data-limited framework suggests assessment methods and how to derive catch

advice. However, some flexibility is allowed, and other methods can be used if considered

appropriate by experts in ICES working groups.

The framework is not entirely static, and stocks can move between categories, e.g. if more

data become available, or if more existing data are used, a stock can move to a higher (less

data-limited) category. Conversely, stocks can move to a lower (more data-limited) category

due to arising data or assessment issues.

The framework also has some unusual applications, illustrated here for the plaice stock in the

Western English Channel (ICES, 2019f, 2019d). This stock was assessed as category 1 data-rich

stock with a fully analytical age-structured stock assessment and the MSY framework was used

to derive catch advice until 2015. Then, after a benchmark workshop, the stock was downgraded

to category 3 due to issues with the assessment model fit and underlying data. Since then, the

advice has been based on the “2 over 3” rule. However, this rule is not applied to a biomass

index, but instead, the full analytical assessment is still performed, and the assessment results

are used as input for the data-limited method. Essentially, this means that the empirical 2 over

3 rule is applied to modelled population estimates.

The ICES advice for stocks contains an evaluation of the current stock status relative to

reference points, and, if available, reference points according to the ICES MSY approach (FMSY

and MSYBtrigger) are used (ICES, 2019a). Since the categorisation of stocks into categories

in 2012 for advice purposes (ICES, 2012a), the stock status evaluation relative to the MSY

approach reference points is possible due to the availability of quantitative assessments and

reference points. For stocks in categories 3 and 4, however, such an evaluation has not always

been possible because of missing MSY evaluations or quantitative assessments in general, and

had to fall back to precautionary or qualitative evaluations (such as increasing or decreasing

stock trend). In recent years, efforts have been made within ICES workshops (ICES, 2015a,

2016) to develop and apply methods that can be used to determine stock status relative to MSY

reference points for data-limited stocks.
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There is an accepted set of methods available in ICES guidelines which can be used for

determining stock status (ICES, 2018b). These include a state-space biomass-dynamic model,

the Surplus Production in Continuous Time (SPiCT, Pedersen & Berg, 2017) model and three

methods that use catch length frequencies to inform on stocks status or exploitation: the length-

based spawner per recruit model (LB-SPR, Hordyk et al., 2015), mean length Z (MLZ, Gedamke

& Hoenig, 2006) and length-based indicators (ICES, 2014, 2015a, 2018b). The results from these

methods are generally treated as proxies for MSY reference points and the biomass reference

point MSYBtrigger defined as 1/2BMSY (ICES, 2018b). Additionally, the stock status evaluation

is also used to decide on the application of the precautionary buffer to the catch advice, if either

fishing mortality is above or SSB below the proxy reference point, or both, then the catch advice

should be reduced once in accordance with the precautionary buffer, i.e. reduced by 20%, and

the application reconsidered after three years (ICES, 2019a). For stocks in categories 5 and 6,

evaluation of stock status is generally not possible due to data limitations and only qualitative

evaluations (e.g. increasing or decreasing trend), if at all, are possible.

4.5 The history of the “2 over 3” catch rule

The history of the “2 over 3” rule (see Equations 4.1 and 4.2 above) within ICES is somewhat

opaque. The following section is aimed at shedding some light into how this rule emerged and

why it was chosen.

The 2009 communication from the European Commission on consultations on fishing oppor-

tunities for 2010 (European Commission, 2009) states the intention of the European Commission

to develop a management strategy for fish stocks for which ICES has not been able to provide

catch advice based on a quantitative assessment and forecast. Therefore, a request from the

European Commission to ICES was formulated with a simple rule, and ICES was asked to evalu-

ate and, if necessary, modify this rule (European Commission, 2009). This request was renewed

in 2010 (Annex IV of European Commission, 2010) because ICES did not return a full response

in 2009. The request asked for the new rule to be evaluated with respect to the precautionary

and MSY approach.

The request specified a rule for data-limited stocks, excluding short-lived stocks, which com-

prised several elements. The main component of this rule was the aim to reach FMSY, by

increasing or decreasing TACs (European Commission, 2010, Annex IV, components 1 and 2)
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and this aim was overriding subsequent components. However, there were no specifications on

how to evaluate or achieve this, and for most data-limited stocks, there were no estimates or

proxies available for fishing mortality. Subsequent components of this new rule were dealing with

considerations about stock abundance information; the first being that the TAC should be kept

constant in the absence of reliable abundance information or no trend therein (component 4).

The last element of the new rule (component 5) might well be considered as the first mentioning

of a catch rule that would eventually lead to the formulation of the “2 over 3” rule (European

Commission, 2010, Annex IV, Rule 5, p. 19):

5. Where ICES considers that representative stock abundance information exists,

the following rule applies:

a. If the average estimated abundance in the last two years exceeds the average

estimated abundance in the three preceding years by 20% or more, a 15% increase

in TAC applies.

b. If the average estimated abundance in the last two years is 20% or more lower

than the average estimated abundance in the three preceding years, a 15% decrease

in TAC applies.

This early definition already used the average of the abundance in the last two years divided

by the average in the three preceding years to inform on the stock trend. However, instead of

using this ratio directly, it implied a step function to be applied on the newly advised catch with

three distinct values; reduce TAC by 15%, increase TAC by 15% or keep the previous TAC,

depending on whether the stock trend indicates a decline of 20% or more, an increase of 20% or

more, or a change below the 20% thresholds.

Following this request from the European Commission, this rule (European Commission,

2010, Annex IV, components 4 and 5) was evaluated with a management strategy evaluation

within the ICES community (De Oliveira et al., 2010) and presented at ICES workshops such

as WKFRAME (ICES, 2011b) and WKLIFE (ICES, 2012d). The initial evaluation of the rule

only included a limited set of operating models (cod-like and herring-like) and few scenarios.

However, the evaluation concluded that the rule performed unsatisfactorily because it was not

sufficiently reactive due to the 20% threshold required in the abundance trend for the catch

to be changed (De Oliveira et al., 2010). Furthermore, the performance of the rule could be

improved by replacing the step function with a linear transition when the abundance trend was
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below the 20% threshold. This early work already cautioned that the rule is rather designed to

keep a stock stable but does not ensure an appropriate stock condition.

During a review of the first WKLIFE workshop in early 2012 (ICES, 2012d), the current

formulation of the “2 over 3” rule was mentioned for the first time as a method to derive advice

for category 3 data-limited stocks in a framework for data-limited stocks. This framework later

evolved into the ICES data-limited stock guidance document (ICES, 2012b) as described above.

The reason for recommending this method was based on the concept of Russell (1931) that

if a stock is overfished, the stock size will decrease and to counteract this decline, catches should

be reduced (ICES, 2012b). Early simulations showed that the rule could stabilise a stock (ICES,

2012d). Alternatives were proposed but required more data which are commonly not available

for category 3 stocks.

The catch rule entails some issues which are evident even without simulations but simply

by looking at its formulation. The change in the catch advice is governed by values from

an index that might not necessarily be representative for the stock. Furthermore, the rule

uses only historical data that are further smoothed by using averages over two or three years.

There is always a time lag between the index data and the year for which the advice is given.

This smoothing might be a desirable feature if the stock is starting to increase because it will

require some time until this change will be reflected in increasing catches. However, if the stock

decreases or even collapses, it can take up to several years until the method advises a catch

reduction. Additionally, the catch rule does not contain a target and only alters the catch advice

depending on the stock trend as perceived from an index, therefore not safeguarding sustainable

and precautionary exploitation. If the fishery is the driving component of the exhibited stock

dynamics, such a rule can lead to dangerous oscillatory behaviour because the catch advice

always follows the stock trend but with a delay.

4.6 History of the length-based rfb rule

During the process of developing the methods in ICES that are currently used for advice pur-

poses, other catch rules were proposed but were not adopted. Here, the history of the length-

based catch rule (called the rfb rule in this thesis), which is one of the main topics in this PhD

project, is traced back to its origins.
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At the beginning of 2012, before the development and adoption of the “2 over 3 rule”, at

the third ICES workshop on implementing the FMSY framework (WKFRAME 3, ICES, 2012c),

a new empirical catch rule was conceptualised with the intention of being applied to stocks

without full analytical assessments and forecasts, i.e. for non-data-rich stocks. The idea of the

concept was to assess the pressure and state of the stock relative to proxy reference points, to

include a quality of information element and to have a target component in order to move the

stock towards a target. The conceptual rule was formulated as:

Ay+1 = Acurrent r f b, (4.7)

where the new catch advice Ay+1 was calculated from the current catch (or advice value) Acurrent

and multiplied by three components, representing the stock response rate (r), a proxy for the

ratio of a proxy FMSY divided by the current fishing pressure (f), and a biomass safeguard

component (b) as the current stock size divided by the biomass reference value MSYBtrigger and

used when the stock drops below MSY Btrigger.

The initial consideration was that not all three components would be available, and in the

light of a precautionary principle, missing components should be replaced by the value 1 (i.e.

removed) and an additional penalty factor (θ < 1) added. In case of more than one missing

element, the penalty factor should be smaller to ensure greater precaution.

The component r was thought to represent the trend in the stock size and should, therefore,

consider the reproductive population, i.e. SSB or a suitable proxy thereof. In order to represent

a trend, r would have to be calculated as a ratio of the values of any two years or a ratio of

averages over several years, to be selected based on longevity and productivity of the stock.

Regarding the number of years to be used, the WKFRAME report states that “as an arbitrary

default, we suggest n=5” (ICES, 2012c, p. 15) and the trend could be derived either by the slope

of the logarithms or by using the average of the last two years’ values divided by the average of

the preceding three years’ values. No suggestions were made about how to calculate component

f . Components r and f were initially thought to be used only where they could be quantified

and if the signal in the data was different from 1 and beyond a threshold, so that weak signals

would not influence the catch rule. The suggestion to use the average over several years was

intentional so that stock variability caused by internal factors such as recruitment is not picked

up, and only signals caused by exploitation have an impact on the rule. In general, the concept
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of the rule was to design a rule compliant with the precautionary approach but with integrated

MSY objectives.

The early description of this rule can be seen as a concept, because no specific guidance was

provided on how to calculate the components or what data to use. This rule was initially not

implemented; however, when removing components f and b, the rule becomes the basis of the

“2 over 3” rule, which was included as an option for category 3 data-limited stocks, and was

applied in 2012 for the first time in the advice given for 2013.

This catch rule concept was neglected after the implementation of the data-limited framework

(ICES, 2012b) for several years, but is an integral part of this PhD project and explored in

Chapters 6, 7, 8, and 11.

A second empirical management procedure will be explored in later chapters of this thesis.

This management procedure is based on the principle of a harvest rate, similar to the rule

described in Equation (4.6) above. This empirical harvest rate rule and its history in ICES will

be introduced in Chapter 9.

4.7 Conclusion

ICES classifies fish stocks into six categories depending on the availability of data and the

applicability of methods. While such as structured approach is desirable to ensure fisheries

management advice is appropriate for different stocks, the ICES implementation could be con-

sidered insufficient because the methods for data-limited stocks do not ensure compliance with

precautionary and sustainability principles. However, this situation offers scope for improvement

and this PhD project aims to improve the scientific basis on which ICES advice for category 3

data-limited stocks is based.
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Chapter 5

Generating operating models from

life-history parameters
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5.1 Foreword

This chapter describes the generation of the generic operating models for 29 fish stocks, which

were used in subsequent chapters in the context of simulations following the management

strategy evaluation approach. A summary of this chapter’s operating model description was

included in the Supplementary Material of Fischer et al. (2020):

Fischer, S. H., De Oliveira, J. A. A. & Kell, L. T. (2020). Linking the performance of a

data-limited empirical catch rule to life-history traits. ICES Journal of Marine Science,

77 (5), 1914–1926. https://doi.org/10.1093/icesjms/fsaa054

Additionally, this chapter includes an elasticity analysis of the operating models. A preliminary

version of this elasticity analysis was presented at the tenth International Council for the Ex-

ploration of the Sea (ICES) Workshop on the Development of Quantitative Assessment Method-

ologies based on LIFE-history traits, exploitation characteristics, and other relevant parameters

for data-limited stocks (WKLIFE X) and was included in the workshop report (section 3.5 of

ICES, 2020a):

ICES. (2020a). Tenth Workshop on the Development of Quantitative Assessment Meth-

odologies based on LIFE-history traits, exploitation characteristics, and other relevant

parameters for data-limited stocks (WKLIFE X). ICES Scientific reports, 2 (98), 72 pp.

https://doi.org/10.17895/ices.pub.5985

The following sections in this chapter are an adaptation of these publications.

5.2 Abstract

The application of the management strategy evaluation approach requires the creation of op-

erating models. However, many fish stocks are data-limited, and there are insufficient data for

analytical stocks assessments on which operating models could be based. The alternative is to

consider life-history information. A total of 29 data-limited fish stocks were simulated based on a

set of available life-history parameters and these stocks covered a wide range of life-history traits,

including slow- and fast-growing, short- and long-lived, demersal and pelagic species, round and

flatfish, elasmobranchs and shellfish. The primary input parameters comprised von Bertalan-

ffy growth parameters, allometric length-weight conversion factors, and age at 50% maturity.

Established functional relationships were deployed to estimate remaining biological parameters,
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such as natural mortality, as well as for characterising the fishery. An elasticity analysis was

conducted to determine the influence of the primary input parameters on the operating models.

The elasticity analysis revealed that the individual von Bertalanffy growth rate k, and to a lesser

extent, the recruitment steepness h, were most influential.

5.3 Introduction

The application of the management strategy evaluation (MSE) approach requires the creation

of operating models. For data-limited stocks, analytical stock assessments usually do not exist

on which operating models could be conditioned. An alternative is to simulate fish stocks

considering life-history information.

One of the earliest attempts to create operating models relying on life-history parameters

and life-history relationships (Gislason et al., 2008; Gislason et al., 2010) using the Fisheries

Library in R (FLR, Kell et al., 2007) was for a project for the Food and Agriculture Organ-

ization (FAO; Rosenberg et al., 2014) in which data-poor methods were evaluated. The same

procedure was later used for testing a super ensemble of catch-only methods in a control rule

(Anderson et al., 2017; Walsh et al., 2018). Jardim et al. (2015) further adapted the approach

and tested data-limited empirical management procedures for a wide range of life histories. The

procedure to generate operating models based on life-history parameters was recently further

developed and formalised into the FLR package FLife (https://github.com/flr/FLife/). FLife

allows the generation of complex age-structured operating models and requires only some life-

history parameters. The package follows a modular approach and missing parameters can be

inferred through established life-history invariants or functional relationships.

The operating models in this chapter were generated based on life-history parameters and

making use of FLife. The decision to use this approach was based on the consideration that

data-limited stocks mostly lack analytical stock assessments and are often poorly studied. Never-

theless, life-history information is often available. Furthermore, it is possible to quickly simulate

many fish stocks without the need to develop resource-intensive stock assessment models. The

approach allows to include a wide range of life-history traits, such as slow-growing long-lived

species (e.g. elasmobranchs), fast-growing short-lived species (e.g. small pelagics), and demersal

round- and flatfish.
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Fish species can occur in several areas around the world, some population substructures

might exist, and there are different approaches on sampling species and estimating life-history

parameters. Therefore, there is a considerable spread for the values of parameters. Jardim et al.

(2015) retrieved life-history parameters from Fishbase (www.fishbase.org), an online database

of fish species, for their operating models and averaged life-history parameters for 50 species.

Consequently, the resulting operating models are rather reflective of species averages instead

of considering specific fish stocks. At least some of these operating models might therefore be

biologically implausible.

The operating models generated for this PhD project are based on life-history parameters

from real fish stock units in the North-East Atlantic (North Sea region, Celtic Sea region, Bay

of Biscay, and widely distributed stocks) and are consequently more realistic. The parameters

were sourced from peer-reviewed literature, reports of scientific institutes and ICES. The sets

of life-history parameters for a specific species are internally consistent and refer to the same

fish stock as far as possible. A total of 29 stocks were simulated and covered stocks which were

considered data-limited but for which enough information was available to condition operating

models. The operating models were based on a few primary input parameters. These life-history

parameters are usually available for data-limited stocks and can sufficiently define a fish stock

to generate an age-structured operating model, capturing its intrinsic dynamics and behaviour

towards extrinsic forces such as fishing. This approach led to operating models that exhibit

life-history characteristics of specific species but their stock condition and fishing history do not

match actual fish stock units. Therefore, these operating models are referred to as “generic

operating models” in this thesis. This approach raises the question of which parameters are

most influential and how robust the model is to parameter value changes.

The influence of parameters in a model can be evaluated with an elasticity analysis. In an

elasticity analysis, the influence of input parameters of a model is evaluated, e.g. by calculating

the first-order derivatives of one or more important model output parameters with respect to

model input parameters, which can be represented with a Jacobian matrix.

The generation of operating models is a complex process and requires the inclusion of as-

sumptions, e.g. about life-history invariants (Beverton & Holt, 1959; Beverton, 1992; Prince et

al., 2015). Furthermore, this process includes numerical optimisations, e.g. for the calculation

of equilibrium dynamics. Therefore, operating model parameters cannot be purely algebraically
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linked to the primary input parameters. Consequently, the gradients of the elasticity analysis

have to be approximated numerically.

5.4 Operating model description

This section describes the generic operating models used for simulation testing of the empirical

data-limited management procedures (the rfb rule in Chapters 6, 7, and 8; and the hr rule in

Chapter 9). The age-structured operating models for the 29 simulated stocks were created using

the Fisheries Library in R (FLR, Kell et al., 2007) package FLife (https://github.com/flr/FLife).

If not specified otherwise, the default configurations of FLife version 2.1.1 (https://git.io/JLSYZ)

were deployed. The full input parameters and source code for the creation of the operating

models is available on GitHub at https://git.io/JIidn.

Input parameters used were the allometric length-weight parameters (a, b), von Bertalanffy

growth parameters L∞, k and t0, and the length or age at 50% maturity (L50, t50). These input

values are given in Table 5.1. Table 5.2 gives further parameters characterising the operating

models of the 29 simulated stocks.

5.4.1 Growth

To model individual growth, the von Bertalanffy growth model (von Bertalanffy, 1938) and as

reformulated by Beverton (1954) was used:

Lt = L∞(1 − e−k(t−t0)) (5.1)

where Lt is the individual length at age t, L∞ the theoretical asymptotic length, k the individual

growth rate and t0 the hypothetical age at which the length of the individual is zero. FLife

defines a default t0 = −0.1 years in the absence of empirical data. Ages were modelled from

age 1 onward up to a maximum age tmax, which was set as a plusgroup. tmax was defined as

the age, rounded up, where growth reaches 95% of L∞. This is calculated by solving the von

Bertalanffy equation for t and setting L = 0.95L∞:

tmax = t0 − ln(0.05)
k

. (5.2)
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Table 5.1: Life-history parameters of the 29 simulated stocks, including their scientific and common names, ICES ecoregion where the life-history
parameters are sourced from, a unique stock ID, sex (male M, female F, combined C) and the life-history parameters used as input for the operating
models; von Bertalanffy growth equation parameters (k, L∞, t0), length-weight parameters (a, b), and length and age at 50% maturity (L50, t50).

Scientific name Common name ICES ecoregion ID sex k [year-1] L∞ [cm] t0 [years] a b L50 [cm] t50 [years]
Lophius budegassa blackbellied angler Celtic Sea ang3 F 0.08 110.1 0.39 0.0259 2.858 54.8 9
Raja clavata thornback ray Celtic Sea rjc2 F 0.09 139.5 -1.84 0.0024 3.2653 71.8 6.13
Sebastes norvegicus golden redfish Northern smn C 0.11 50.2 0.08 0.0178 2.972 40.3 14.84**
Anarhichas lupus Atlantic wolffish North Sea wlf F 0.11 115.1 -0.39 0.0046 3.185 21.5 3.8
Lepidorhombus whiffiagonis megrim North Sea meg C 0.12 54 -0.1* 0.0022 3.3433 23 3
Molva molva ling Widely lin C 0.14 119 -0.1* 0.0036 3.108 74 7.2
Raja clavata thornback ray North Sea rjc F 0.14 118 -0.88 0.0045 3.0686 77.1 6.69**
Scyliorhinus canicula lesser spotted dogfish Celtic Sea syc F 0.15 75.14 -0.96 0.0019 3.1541 57 7.9
Mustelus asterias starry smooth-hound Widely sdv F 0.15 123.5 -0.1* 0.001 3.27 81.9 7.15**
Lophius piscatorius angler Celtic Sea ang C 0.18 105.555 -0.38 0.0198 2.895 73 6.16**
Lophius piscatorius angler North Sea ang2 C 0.18 106 -0.1* 0.0297 2.841 61 4.66*
Pollachius pollachius pollack North Sea pol C 0.19 85.6 -0.1* 0.0076 3.069 47.1 4.11**
Melanogrammus aeglefinus haddock Celtic Sea had C 0.20 79.9 -0.36 0.0113 2.96 2
Nephrops Norway lobster Biscay-Iberia nep M 0.20 70 -0.1* 0.00028 3.229 28.4 2.50**
Mullus surmuletus striped red mullet Celtic Sea mut F 0.21 47.5 -0.1* 0.0057 3.243 16.9 1.99**
Spondyliosoma cantharus black seabream Celtic Sea sbb F 0.22 41.25 -1.16 0.0148 3.004 22 2.30**
Pleuronectes platessa European plaice Celtic Sea ple F 0.23 48 -0.1* 0.011 2.958 22.9 2.72**
Scyliorhinus canicula lesser spotted dogfish Biscay-Iberia syc2 F 0.23 66.2 -0.71 0.0022 3.119 59.1 9.00**
Argentina silus greater argentine Widely arg C 0.23 44 -0.1* 0.005 3.075 38 8.2
Scopthalmus maximus turbot North Sea tur F 0.32 66.7 0.29 0.0149 3.079 34.2 2.2
Chelidonichtys lucerna tub gurnard Celtic Sea gut F 0.32 66.8 -0.46 0.0043 3.21 40.1 2.41**
Merlangius merlangus whiting Celtic Sea whg F 0.38 38 -1.01 0.0103 2.395 28 2.50**
Scophthalmus rhombus brill North Sea bll F 0.38 58 -0.27 0.014 3.01 31.3 1.6
Microstomus kitt lemon sole North Sea lem C 0.42 37 -0.1* 0.0123 2.971 27 3.02**
Engraulis encrasicolus anchovy Biscay-Iberia ane C 0.44 23 -0.1* 0.005 3.107 16.8 2.88**
Zeus faber John Dory Celtic Sea jnd F 0.47 50.8 -1.47 0.0399 2.754 34.5 0.95**
Sardina pilchardus European pilchard Celtic Sea sar C 0.60 22 -0.1* 0.0053 3.162 14.3 1.65**
Clupea harengus herring Celtic Sea her F 0.61 33 -0.1* 0.0048 3.198 23 1.87**
Ammodytes spp. sandeels North Sea san C 1.00 24 -0.1* 0.0049 2.783 12 0.59**

* Denotes where default values for t0 have been used.
** These t50 values were calculated with the von Bertalanffy growth equation parameters and L50.
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Table 5.2: Further operating model values for the 29 simulated stocks. The stock ID corresponds to the ID in Table 5.1. Shown are the maximum
age (plus-group tmax), age range for mean fishing mortality (minfbar, maxfbar), Beverton-Holt stock-recruitment parameters (α, β), spawners per
recruit at F = 0 (SPR0), MSY reference points (FMSY, MSY, BMSY, mean length at MSY: Lopt), growth rate (instantaneous growth rate at the
limit of zero stock size r, and conditional growth rate at MSY rc, both derived from a Leslie matrix model), mean natural mortality of the mature
proportion of the stock (M), and the ratios M/k (von Bertalanffy k), FMSY/M and BMSY/B0 (unfished spawning stock biomass, 1000 for all stocks).

ID tmax minfbar maxfbar α β SPR0 FMSY MSY BMSY Lopt r rc M M/k FMSY/M BMSY/B0

ang3 38 4 20 14.22 90.91 76.71 0.06 22.08 275.28 109.00 0.13 0.05 0.09 1.15 0.65 0.28
rjc 32 2 15 0.07 90.91 14697.76 0.06 21.94 287.85 102.81 0.16 0.05 0.10 1.09 0.61 0.29
smn 28 9 23 52.76 90.91 20.68 0.11 51.59 227.85 49.70 0.12 0.06 0.12 1.07 0.91 0.23
wlf 27 1 10 0.44 90.91 2489.95 0.07 27.75 282.61 82.22 0.25 0.09 0.15 1.36 0.49 0.28
meg 25 1 5 17.51 90.91 62.30 0.08 25.43 323.66 35.88 0.25 0.07 0.18 1.54 0.42 0.32
lin 22 2 15 1.03 90.91 1061.06 0.09 40.86 263.18 85.71 0.19 0.08 0.14 1.01 0.67 0.26
rjc 21 2 13 0.31 90.91 3515.48 0.10 45.76 250.00 83.96 0.22 0.09 0.14 1.02 0.70 0.25
syc 20 3 13 2.74 90.91 398.58 0.12 60.23 234.23 52.37 0.22 0.10 0.16 1.04 0.74 0.23
sdv 20 2 11 1.39 90.91 782.43 0.09 42.97 265.69 91.96 0.19 0.08 0.15 0.99 0.59 0.27
ang 17 1 9 0.35 90.91 3084.69 0.10 58.02 251.17 72.08 0.24 0.10 0.18 0.99 0.59 0.25
ang2 17 1 8 0.41 90.91 2677.30 0.12 58.29 249.22 70.65 0.32 0.13 0.20 1.10 0.61 0.25
pol 16 1 6 1.18 90.91 927.67 0.12 48.29 284.13 58.74 0.30 0.11 0.21 1.12 0.54 0.28
had 15 1 5 0.83 90.91 1312.47 0.15 43.96 310.45 52.55 0.42 0.13 0.26 1.30 0.58 0.31
nep 15 1 4 29.81 90.91 36.60 0.15 53.51 278.87 49.33 0.47 0.17 0.28 1.38 0.54 0.28
mut 15 1 5 5.78 90.91 188.70 0.20 83.72 231.43 31.22 1.04 0.40 0.35 1.66 0.59 0.23
sbb 13 1 5 2.14 90.91 509.71 0.22 74.92 256.33 24.73 0.55 0.21 0.28 1.29 0.77 0.26
ple 13 1 5 7.57 90.91 144.02 0.21 90.74 234.03 29.31 0.64 0.27 0.32 1.40 0.65 0.23
syc2 13 4 11 6.96 90.91 156.77 0.15 122.34 212.04 43.79 0.24 0.13 0.22 0.96 0.69 0.21
arg 13 3 11 36.11 90.91 30.21 0.16 116.74 220.42 26.86 0.23 0.11 0.24 1.04 0.65 0.22
tur 10 1 3 1.68 90.91 651.13 0.23 75.03 293.59 66.03 0.59 0.21 0.40 1.25 0.57 0.29
gut 9 1 5 0.96 90.91 1130.63 0.26 100.71 256.06 44.72 0.65 0.26 0.37 1.15 0.71 0.26
whg 7 1 4 32.98 90.91 33.08 0.39 209.17 211.60 20.30 0.85 0.41 0.44 1.15 0.90 0.21
bll 8 1 4 1.07 90.91 1021.82 0.40 143.51 235.34 41.26 1.23 0.51 0.48 1.27 0.84 0.24
lem 8 1 4 11.49 90.91 94.91 0.30 143.99 249.78 21.68 0.55 0.23 0.46 1.10 0.65 0.25
ane 7 1 4 95.92 90.91 11.37 0.40 331.09 195.77 13.87 1.11 0.61 0.57 1.30 0.69 0.20
jnd 5 1 3 0.59 90.91 1853.54 0.60 243.49 216.83 34.89 1.99 0.97 0.52 1.11 1.15 0.22
sar 5 1 3 51.17 90.91 21.32 0.76 372.20 202.48 15.76 2.04 1.08 0.81 1.35 0.94 0.20
her 5 1 3 12.99 90.91 83.98 0.64 402.75 198.70 23.76 2.16 1.20 0.76 1.25 0.84 0.20
san 3 1 2 83.89 90.91 13.00 1.47 588.43 211.17 16.01 2.85 1.70 1.21 1.21 1.21 0.21
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Lengths (Lt) could be converted into weights (Wt) with an allometric length-weight relation-

ship

Wt = aLb
t , (5.3)

where a and b are empirical length-weight parameters. Figure 5.1 shows the modelled length

and weight for two examples stocks (pollack and herring). The biological parameters were kept

constant over time.
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Figure 5.1: Modelled length and weight at age for two example stocks. The points indicate the
values corresponding to the ages used in the operating models.

After this initial modelling of growth as length, the operating model was built with an age

structure, and only the lengths corresponding to the ages of the operating model were used

subsequently.

Missing input parameters can be estimated by FLife using empirical relationships; namely

k = 3.15L−0.64
∞ (5.4)

(Gislason et al., 2008) and

L50 = 0.72L0.93
∞ (5.5)

92



(Gislason et al., 2008). However, the application of either Equation (5.4 and 5.5) was not

required for any of the 29 modelled stocks because empirical estimates were available for both

parameters for each simulated stock.

5.4.2 Natural mortality

Natural mortality M was modelled as length dependent according to Equation 2 in Gislason

et al. (2010):

ln(ML) = 0.55 − 1.61 ln(L) + 1.44 ln(L∞) + ln(k) (5.6)

To derive natural mortality at age (Mt), the von Bertalanffy growth Equation (5.1) is sub-

stituted into Equation (5.6). Figure 5.2 illustrates natural mortality.
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Figure 5.2: Modelled natural mortality at age for two example stocks. The points indicate the
values corresponding to the ages used in the operating models, which start at age 1.

5.4.3 Maturity

Maturity at age mt is modelled with a logistic function:

mt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mmin, if t < (t50 − 5)

mmax
1+19(t50−t)/tto95

, if (t50 − 5) ≤ t ≤ (t50 + 5)

mmax, if t > (t50 + 5)

(5.7)

where mmin and mmax are the minimum and maximum value of the maturity, t50 the age at

50% maturity and tto95 defines the steepness of the curve (the offset between t50 and the age at

95% maturity). This functional form follows the modelling of maturity in the integrated stock
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assessment model CASAL (Bull et al., 2012). For the 29 stocks simulated here, the default

parameterisation of FLife was kept (mmin = 0, mmax = 1, tto95 = 1) which resulted in an

asymptotic maturity curve (Figure 5.3).
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Figure 5.3: Modelled maturity ogive at age for two example stocks.

5.4.4 Fishery

The fishery was modelled as a single fleet with one gear per stock and fishing occurred throughout

the year. The catches from the fishery were modelled as total catches without separating them

into landings and discards. The fishery was defined by the fisheries selectivity at age (st) and

modelled with a flexible double normal function:

st =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

−
(︂

t−t1
sL

)︂2

, if t < t1

2
−
(︂

t−t1
sR

)︂2

, if t ≥ t1

(5.8)

with the three parameters t1, sL and sR. This function allows various functional forms of the

selectivity curve, including asymptotic and dome-shaped selectivity. t1 defines the age with

the maximum selectivity (st=t1 = 1) and sL and sR define the shape of the left and right and

arm of the curve. This double normal selectivity curve is commonly applied in integrated stock

assessment models, such as CASAL (Bull et al., 2012) or Stock Synthesis (Methot & Wetzel,

2013; Methot et al., 2020). For the 29 stocks simulated here, the default parameterisation of

FLife was kept (t1 = t50, sL = 1, sR = 5000) which resulted in an asymptotic selectivity curve

where the first age with full selectivity corresponded to t50 (Figure 5.4).

For simplicity and better comparability, only one functional form (asymptotic) was con-

sidered for fishery selectivity in the generic operating models of all simulated stocks. In reality,
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Figure 5.4: Modelled fisheries selectivity at age for two example stocks.

various functional forms are common, depending on the specific fishery, including options where

fish are only selected after maturity or dome-shaped selectivity where older fish are not fully selec-

ted. Alternative selectivities can substantially affect the operating models and change operating

model characteristics such as fishing reference points, possibly impairing direct comparability.

In the case-specific simulations in Chapter 11, fishery selectivity is based on the perception from

stock assessment models. For two of the three case study stocks (plaice and herring), fishery se-

lectivity was estimated to be largely asymptotic in recent years with maximum selectivity at the

oldest modelled age. For the third case study stock (cod), fishery selectivity was dome-shaped

in recent years but only because the oldest modelled age had a lower selectivity.

5.4.5 Recruitment

Recruitment (R) was modelled with the Beverton-Holt stock-recruitment model. Beverton and

Holt (1957) originally defined recruitment as a function of the number of eggs; however, the

model is mainly used as a function of spawning stock biomass (SSB) nowadays. Various formu-

lations and reparameterisations of the Beverton-Holt stock-recruitment model exist, for example:

R = α SSB
β + SSB (5.9)

This model has two parameters, α and β, which can be reformulated in terms of recruitment

steepness h (defined as the proportion of expected recruitment produced at 20% of unfished

SSB, B0, relative to unfished recruitment, R0). This gives

α = 4hR0
5h − 1 (5.10)
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and

β = B0(1 − h)
5h − 1 . (5.11)

Equations (5.10) and (5.11) can be substituted into Equation (5.9):

R = 0.8R0hSSB
0.2B0(1 − h) + (h − 0.2)SSB (5.12)

The steepness was set for all stocks to h = 0.75 and B0 arbitrarily to 1000. The form of the

Beverton-Holt stock recruitment model is shown in Figure 5.5
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Figure 5.5: Beverton-Holt stock recruitment model. The dashed lines indicate the steepness of
h = 0.75. Both recruitment (R) and spawning stock biomass (SSB) are shown relative to their
unfished values (R0, SSB0).

5.4.6 Population dynamics

Population dynamics followed the usual exponential decay equations:

Nt,y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ry eεR
y t = 1

Nt−1,y−1 e−Ft−1,y−1−Mt−1,y−1 1 < t < T

Nt−1,y−1 e−Ft−1,y−1−Mt−1,y−1 + Nt,y−1 e−Ft,y−1−Mt,y−1 t = T

(5.13)

where the first age class (t = 1) is the recruitment age (following Equation 5.12) and T is the

maximum age (tmax, set as a plusgroup). A log-normal recruitment process error is included

with eεR where εR ∼ N
(︁
0, σ2)︁ and defaults to σ = 0.6 in subsequent chapters.
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The log-normal recruitment error was applied without bias correction, as is common practice

in many models in fisheries science. The consequence was that the median of the modelled

recruitment values in the simulations matched the recruitment from the recruitment model, i.e.

that, on average, the same number of simulation replicates had values above and below, but

the mean recruitment was σ2/2 higher than the median. However, in the following chapters,

most metrics from the simulations are presented as medians and not means and are therefore

less affected by this potential bias.

Catch numbers were calculated following the Baranov catch equation (Sharov, 2021):

Ct,y = Ft,y

Ft,y + Mt,y
Nt,y

(︂
1 − e−Ft,y−Mt,y

)︂
(5.14)

5.4.7 Equilibrium dynamics and reference points

The definitions of stock and fishery characteristics from the previous sections allowed setting up

the biological stock and fishery of the operating model. This was done with FLR’s FLife pack-

age (https://github.com/flr/FLife), which uses the routines from another FLR package called

FLBRP (https://github.com/flr/FLBRP). Essentially, the process consists of determining the

equilibrium conditions of the operating models. The first step is to find the recruitment model

parameters which lead to the selected stock size under no fishing. For the generic operating

models, this state was defined with an unfished SSB of 1000. Subsequently, alternative equilib-

rium states that include fishing can be found, for example, the state with the highest long-term

sustainable catch. The unfished state was the starting condition for hypothetical fishing histories

and could then be used to evaluate candidate management procedures.

Several reference points were used to indicate the stock status and exploitation level and

also as a measure to quantify the performance of management procedures tested with MSE

simulations. These reference points were derived from equilibrium conditions of the operating

models without uncertainty around parameters, i.e. they are deterministic reference points.

The following reference points were used:

• BMSY, FMSY, MSY

The equilibrium reference points for SSB, F and catch corresponding to the state of the

stock when it is at its highest long-term yield (maximum sustainable yield, MSY).

• Blim
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Blim is an SSB limit reference point below which a stock is thought to be at increased

risk of impaired recruitment and management should ensure that stocks do not fall below

this level. Blim is commonly used in ICES to ensure compatibility with the precautionary

approach (ICES, 2017b). The operating models used a Beverton-Holt stock-recruitment

model with a smooth recruitment curve, and therefore, no obvious point exists for defining

impaired recruitment. For the stocks simulated here, the suggestion of ICES (2017f) was

adopted, which defines Blim as the SSB where recruitment is impaired by 30% (i.e. R =

0.7R0). By default, all stock used the same recruitment model, unfished SSB (B0 = 1000)

and recruitment steepness (h = 0.75, see Figure 5.5), which meant that Blim was identical

for all stocks: Blim = 0.163B0 = 163.

• Bcollapse

The level below which a stock was thought to be collapsed (Bcollapse) was set to 0.1% of

B0.

• Fcrash

Fcrash was the lowest fishing mortality which caused the stocks to collapse in equilibrium

conditions. This reference point was useful for the generation of fishing histories because

once this fishing mortality was reached, stocks would crash.

5.4.8 Observations

Biomass index

A biomass index was created from the biological stock in the operating model as a measure to

represent the trend in the biomass of the stock. This biomass index was aggregated over all

ages:

Iy =
(︄

tmax∑︂
t=1

Nt,ysidx,tWt

)︄
eεy , (5.15)

where Nt,y is the number of individuals in the stock at age t in year y, sidx the index selectivity,

and Wt the weight of the individuals at age t. Observation uncertainty was introduced through

the log-normal error term eεy with εy ∼ N(0, σ2
idx). The error was implemented to the age-

aggregated biomass index; however, this is mathematically identical to including the same error

to all ages, e.g. to the numbers or weights at age.
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The default observation uncertainty was set to σidx = 0.2, which is a common value (see

e.g. Jardim et al., 2015) and appropriate for many ICES stocks (see Appendix B for details),

although sensitivity analyses on the impact of uncertainty levels on simulation results have been

conducted (see Chapter 6).

The default index used in Chapters 6, 7, and 8 resembled a scientific survey and the index

selectivity sidx,t based on a logistic function:

sidx,t = sidx,max

1 + e−sidx,steepness(t−sidx,50) (5.16)

with sidx,max = 1 (maximum selectivity), sidx,steepness = 1 (steepness of selectivity curve) and

sidx,50 = 0.1t50 (age where 50% of individuals are selected by the index, i.e. the inflection point

of the selectivity curve, Figure 5.6).
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Figure 5.6: Index selectivity for two example stocks.

Catch

Realised catches from the fishery were thought to be known perfectly and passed without error

to the management procedure, if not explicitly indicated otherwise.

Mean catch length

Some of the empirical management procedures relied on the mean catch length (the mean of

the length of fish caught by the fishery). However, the operating model and the catch numbers

were age-structured. Consequently, generating an index of the mean length of individuals in the

catch required the simulation of length frequencies. Two approaches were adopted, (i) where

full length frequencies were simulated and (ii) a shortcut approach:
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(i) Full length frequencies

This approach was used for the initial simulation testing in Chapter 6. The catch length

distribution was derived from the catch at age distribution from the operating model by

applying an inverse age-length key. The inverse age-length key was based on the von

Bertalanffy growth curve and uncertainty around the length at age was added by applying

a normal distribution on the expected length at age.

To do this, length at age (Lt) was first calculated based on the catch weight at age (Wt)

from the operating model with the length-weight relationship parameters (a, b) and the

allometric length-weight relationship (Equation 5.3), solved for Lt:

Lt =
(︃

Wt

a

)︃1/b

(5.17)

This approach using Equation (5.17) led to lengths that were mathematically identical to

the lengths from the von Bertalanffy growth model (Equations 5.1) because weights at

age in the operating model were calculated with the same von Bertalanffy growth model

and parameters and then converting length to weight with the allometric length-weight

parameters.

The simulated stocks are data-limited and there are no generic length-at-age distributions

easily available to model length distributions. Therefore, in order to simulate a probabil-

istic inverse age-length key, the (deterministic) lengths at age were spread with a normal

distribution and a discrete length distribution generated for each age:

L′
t = N(µ, σ2), (5.18)

with µ = Lt and σ2 = 1. Each L′
t contained lengths rounded to the nearest centimetre

and was cut off:

(µ − 2σ) ≤ L′
t ≤ (µ + 2σ) (5.19)

and

0 ≤ L′
t ≤ L∞. (5.20)
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The result of this approach was a probabilistic inverse age-length key with length probab-

ilities for each age of the operating model. The possible length probabilities at age from

this key were standardised subsequently. This inverse length-key was then applied to the

catch at age distribution to derive the length distribution of the catch.

Sampling from the length distribution (for the management procedure) was approximated

by including a log-normal error term with a distribution (in log-space) of N(µ, σ2) with

µ = CL and σ = 0.2, where CL is the catch at length, in 1cm length bins.

The final mean catch length was then generated with

L̄y =
∑︁

kϵK CkLk∑︁
kϵK Ck

, (5.21)

where K was the set of length bins above the length of first capture Lc, Lk the length

of the length bin, and Ck the aggregated number of individuals in the catch in Lk (after

including the uncertainty described above). Lc was defined following ICES (2012e) as the

first length bin where the catch is at or above half the mode of the distribution of catch

numbers.

This approach of approximating length sampling was considered appropriate because the

management procedure used only the mean length in the catch and a comparison of mean

lengths derived from the approximation and sampling of the catch length frequencies res-

ulted in very similar lengths (both in terms of median as well as uncertainty, see Appendix

B). Furthermore, this approach substantially reduced the runtime and computational re-

quirements of the simulation, compared to including a full sampling protocol.

(ii) Shortcut

Despite approximating sampling, the approach described above had still a high computa-

tional complexity. For every simulation year and replicate, a full catch length distribution

was generated, with length bins for every length up to L∞. This resulted in large objects

which had to be stored in memory. Such computations were acceptable if only few scen-

arios and options were run (see Chapter 6). However, in subsequent chapters (Chapters

7, 8, and 9), many tens of thousands of simulations were required, and, therefore, the

generation of the mean catch length index was simplified. Following Jardim et al. (2015),

ages were converted deterministically into lengths and the index computed as the mean of
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these lengths weighted by the catch numbers:

L̄y =
∑︁

tϵT CtLt∑︁
tϵT Ct

eεy , (5.22)

where Lt was the deterministic length at age t derived from Equation (5.17), T the set

of ages t where Lt ≥ Lc, and Ct are the catch numbers. Uncertainty was added to the

aggregated length with a log-normal error term (eεy , with ε ∼ N(0, σ2)) with a default of

σ = 0.2 (Jardim et al., 2015).

5.5 Elasticity analysis

5.5.1 Methods

From the total list of 29 stocks, two example stocks were selected for the elasticity analysis. These

stocks comprised the large demersal medium-fast growing stock pollack (Pollachius pollachius)

and the pelagic fast-growing stock herring (Clupea harengus). The primary input parameters to

generate these stocks were the same as defined in Table 5.2.

These input parameters were then used to create operating models with the FLR (Kell et al.,

2007) package FLife. An elasticity analysis of the influence of these primary input parameters

on important output parameters describing the characteristics of the operating models was

conducted. The output parameters considered were

• α, β (the Beverton-Holt stock-recruitment parameters),

• FMSY, BMSY, TSBMSY, RMSY, MSY (the MSY reference points for fishing mortality, SSB,

total stock biomass, recruitment and catch),

• TSB0, R0 (unfished reference points for total stock biomass and recruitment),

• r, rc (instantaneous growth rate at the limit of zero stock size and conditional growth rate

at MSY),

• SPR0, SPRMSY (spawning potential ratio at zero stock size and at MSY),

• M (adult natural mortality, calculated as the average of natural mortality at age, weighted

by maturity at age), and

• FMSY/M and M/k (ratios of parameters).
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The elasticity analysis was conducted by numerically approximating the gradient of the

output parameters relative to the primary input parameters at the value of the primary input

parameters, i.e. their first-order derivatives.

5.5.2 Results

Table 5.3 shows the results of the elasticity analysis in the form of the Jacobian matrices for the

two stocks, pollack and herring.

The comparison of absolute values of the different derived operating model parameters is

meaningless due to different units and only a comparison to the default value is interpretable.

In general, the primary input parameter k (von Bertalanffy growth parameter) appeared most

influential on most operating model characteristics such as MSY reference points (FMSY, BMSY)

and growth rate (r) for both stocks. The second most influential parameters was recruitment

steepness h. The effects of k on the operating models are visualised in Figure 5.7 for pollack and

Figure 5.8 for herring. Figures 5.7c and 5.8c show the impact of k on the output parameters

included in the elasticity analysis. The slopes of the curves at the default value of k correspond

to the values from the Jacobian matrices from Table 5.3.

5.6 Discussion

When data-limited fish stocks are simulated, it is necessary to make assumptions because of the

lack of knowledge and data about such stocks. The implementation of specific assumptions and

functional relationships between biological parameters might be, at least partially, considered

arbitrary. Assumptions and functional relationships required for the generation of the operating

models for the 29 simulated stocks, were based on established empirical analyses (e.g. Gislason

et al., 2010), which are also commonly used in other data-limited fisheries simulations. Never-

theless, model uncertainties and their implications need to be considered when the operating

models are deployed.

The elasticity analysis provided insights into which primary input parameters were important

for the definition of operating models. The analysis revealed that the von Bertalanffy growth

parameter k and recruitment steepness h were most influential for the majority of operating

model parameters. For some operating model parameters, additional input parameters appeared

important, e.g. for the Beverton-Holt recruitment model parameter α, the allometric length-
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Table 5.3: Jacobian matrices for the elasticity analysis of pollack and herring. Columns corres-
pond to the input parameters used in the creation of the operating models and rows show the
generated operating model parameters. The row and column labelled “default” represent the
default values for the input and output parameters for comparison.

default L∞ k t0 a b t50 h

pollack
default 85.6 0.19 -0.1 0.0076 3.069 4.1 0.75
α 1.2 −0.1 −7.5 2.3 −154.7 −5.0 0.1 −0.6
β 90.9 0.0 0.0 0.0 0.0 0.0 0.0 −528.9
FMSY 0.1 0.0 0.6 0.0 0.0 0.0 0.0 0.2
BMSY 284.1 0.2 −291.4 20.3 −0.2 39.4 −70.9 −353.6
TSBMSY 454.4 −0.7 1067.3 −23.7 −0.2 −88.3 −9.2 −289.2
RMSY 0.9 0.0 −5.9 1.8 −117.2 −3.8 0.0 0.6
MSY 48.3 −0.1 285.4 −6.4 0.0 −13.5 24.0 59.0
TSB0 1232.0 −1.2 2031.0 −64.3 0.0 −180.4 107.5 0.0
R0 1.1 0.0 −6.8 2.1 −141.8 −4.6 0.1 0.0
r 0.3 0.0 0.8 0.0 0.0 0.0 0.1 0.8
rc 0.1 0.0 0.4 0.0 0.0 0.0 0.1 0.2
SPR0 927.7 41.2 5882.5 −1828.0 122 061.6 3937.2 −67.4 0.0
SPRMSY 318.9 14.3 1774.5 −611.2 41 963.0 1387.0 −83.5 −595.9
M 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.0
FMSY/M 0.5 0.0 1.4 −0.1 0.0 −0.1 0.0 1.2
M/k 1.1 0.0 −3.5 0.1 0.0 0.0 0.0 0.0

herring
default 33 0.606 -0.1 0.0048 3.198 1.9 0.75
α 13.0 −1.4 −5.4 16.9 −2706.2 −43.3 6.3 −6.3
β 90.9 0.0 0.0 0.0 0.0 0.0 0.0 −528.9
FMSY 0.6 0.0 0.9 0.0 0.0 −0.1 −0.3 1.9
BMSY 198.7 0.3 −42.2 −12.9 0.8 9.0 −35.6 −511.0
TSBMSY 296.9 −0.1 91.4 −31.1 1.1 −2.1 −67.2 −624.9
RMSY 8.9 −1.0 −4.3 11.4 −1856.7 −29.6 3.8 4.8
MSY 402.7 −4.1 950.0 50.9 0.0 −68.4 353.0 787.5
TSB0 1234.6 −1.7 504.6 −42.1 0.0 −43.5 17.2 0.0
R0 11.9 −1.3 −4.9 15.5 −2480.7 −39.7 5.8 0.0
r 2.2 0.0 2.0 0.4 0.0 −0.2 1.1 4.8
rc 1.2 0.0 1.6 0.3 0.0 −0.1 1.0 2.4
SPR0 84.0 9.2 34.7 −109.1 17 496.2 280.0 −40.6 0.0
SPRMSY 22.3 2.5 6.0 −29.9 4644.9 75.0 −13.5 −69.3
M 0.8 0.0 0.6 0.2 0.0 0.0 0.0 0.0
FMSY/M 0.8 0.0 0.5 −0.2 0.0 −0.1 −0.4 2.5
M/k 1.3 0.0 −1.1 0.3 0.0 0.0 0.0 0.0
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Figure 5.7: Effect of the von Bertalanffy growth parameter k on the pollack operating model.
(a) shows the basic age-dependent relationships, (b) the equilibrium dynamics with the MSY
levels indicated by the points, and (c) the operating model parameters as a function of k, where
the default value of k is indicated by the dashed vertical line.
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Figure 5.8: Effect of the von Bertalanffy growth parameter k on the herring operating model.
See Figure 5.7 for details.
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weight parameter a is highly influential. However, this can be explained with the fact that

the allometric a works like a scaling factor, linking the weight-at-age and length. Therefore,

a scaling of the allometric a also caused a scaling of the biomass of the stock, which in turn

modifies the recruitment parameter without changing the operating model characteristics apart

from the absolute scale of biomass.

The steepness of the stock-recruitment model was unsurprisingly one of the most influential

parameters. Changes in the steepness cause direct changes in the productivity of a stock, e.g. a

higher steepness will inevitably lead to higher productivity at lower stock sizes and, therefore,

MSY reference points change.

Regarding the von Bertalanffy growth parameters, k was more important than L∞. It was

more important how fast an individual approaches its asymptotic size L∞, as expressed by k,

than the absolute value of L∞. The parameter t0 is used to shift the entire growth curve along

the age-axis. For many of the simulated stocks, this value is poorly estimated or not available

and a default of t0 = −0.1 years was implemented instead. The elasticity analysis provides

reassurance about the appropriateness of using a default value, because t0 had only a minor

effect on the operating models.

Subsequent analyses, where the performance of empirical management procedures was linked

to the primary operating model parameters (see Chapter 6), found that the control rule’s per-

formance was dependent on the value of k of the operating models. The elasticity analysis

conducted here supports this finding and yields further evidence that k is a crucial factor suit-

able for describing the characteristics of a fish stock. k is important to distinguish between

species but also the specific value of k for a stock is important and the estimation procedure of

k from empirical data should be scientifically sound to ensure realism in simulations. Values for

k can be obtained even for data-limited stocks. The practical implication of the outcome of the

elasticity analysis was that k can be used to help characterise a stock.

5.7 Conclusion

In the absence of extensive data sets and stock assessment models for data-limited stocks, generic

operating models can be created from a limited set of life-history parameters. This chapter

provided a description of the generation of the generic operating models, which were used in a

management strategy evaluation in subsequent chapters. A total of 29 fish stocks were simulated
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and these stocks covered a wide range of life-history traits. This approach of simulating many

life histories allowed a robust evaluation of management procedures.

The set-up of generic operating models can rely on potentially arbitrary decisions regarding

the functional form of biological processes, parameter values, or the level of uncertainty. An

elasticity analysis of primary operating model input parameters revealed that the individual

growth rate (the von Bertalanffy parameter k) was the most influential for the definition of the

operating model. This meant that the value of k was important for a specific operating model

but also that k could be used to distinguish between different operating models with different

k values. Consequently, in subsequent chapters, the generic operating models are sometimes

grouped in terms of k. In the following chapters, where empirical management procedures are

developed and tested, the influence of the operating model characteristics is explored. This is

done in the form of sensitivity analyses, for example, for observation uncertainty, in order to

ensure that the outcomes of simulations are robust and not an artefact of the specific set-up of

the generic operating models.
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Chapter 6

Linking the performance of a

data-limited empirical catch rule to

life-history traits1

1This chapter is an adaptation of Fischer et al. (2020). Contains public sector information licensed under the
Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/)
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6.1 Foreword

The work presented in this chapter summarises the results of the first simulations of a data-

limited empirical catch rule (the rfb rule). These initial simulations provided insights into the

performance of this catch rule and paved the way for optimisations of the catch rule towards spe-

cific management objectives, which are explored in the following chapters. Preliminary results

were presented at the eighth International Council for the Exploration of the Sea (ICES) Work-

shop on the Development of Quantitative Assessment Methodologies based on LIFE-history

traits, exploitation characteristics, and other relevant parameters for data-limited stocks (ICES

WKLIFE VIII; ICES, 2018c). Subsequently, additional analyses were undertaken and the work

was peer-reviewed and published in Fischer et al. (2020):

Fischer, S. H., De Oliveira, J. A. A. & Kell, L. T. (2020). Linking the performance of a

data-limited empirical catch rule to life-history traits. ICES Journal of Marine Science,

77 (5), 1914–1926. https://doi.org/10.1093/icesjms/fsaa054

The following sections in this chapter are an adaptation of this publication.

6.2 Abstract

Worldwide, the majority of fish stocks are data-limited and lack fully quantitative stock assess-

ments. Within ICES, such data-limited stocks are currently managed by setting total allowable

catch without the use of target reference points. To ensure that such advice is precautionary, a

management strategy evaluation was used to evaluate an empirical rule that bases catch advice

on recent catches, information from a biomass survey index, catch length frequencies, and MSY

reference point proxies (the rfb rule). Twenty-nine fish stocks were simulated covering a wide

range of life histories. The performance of the rule varied substantially between stocks, and the

risk of breaching limit reference points was inversely correlated to the von Bertalanffy growth

parameter k. Faster-growing stocks with k > 0.32 year−1 had a high probability of stock col-

lapse. A time series cluster analysis revealed four types of dynamics, i.e. groups with similar

terminal spawning stock biomass (collapsed, BMSY, 2BMSY, 3BMSY). It was shown that a single

generic catch rule cannot be applied across all life histories, and management should instead be

linked to life-history traits.
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6.3 Introduction

When managing fisheries, decisions must be made with incomplete knowledge, which is why in-

ternational agreements request the adoption and implementation of the precautionary approach

(Garcia, 1996). In addition, fish retailers and consumers are increasingly looking for assurances

that the food they buy is sustainably produced. Therefore, many regional fisheries management

organisations have implemented management frameworks based on target and limit reference

points to prevent overfishing and ensure targets are achieved. Despite this, most fisheries and

commercially exploited stocks still lack reliable estimates of stock status and effective man-

agement due to poor data, limited knowledge, and insufficient resources (Jardim et al., 2015;

Fitzgerald et al., 2018).

Since 2012, ICES has applied a framework to provide catch advice for the European data-

limited stocks (ICES, 2012b, 2013a). The increasingly sophisticated methods developed for stock

assessment are not always suited to data-poor fisheries (Bentley, 2015). Therefore, recently,

many data-limited approaches have emerged and re-emerged to meet the increasing demand for

science-based fisheries management for data-limited stocks (Wetzel & Punt, 2011; Costello et al.,

2012; Dowling et al., 2015a; Dowling et al., 2016; Chrysafi & Kuparinen, 2016; Rosenberg et al.,

2018). However, in a review of data-limited methods, Dowling et al. (2019) noted the dangers in

the indiscriminate use of generic methods and recommended obtaining better data, using care

in acknowledging and interpreting uncertainties, developing harvest strategies that are robust

to the higher levels of uncertainty, and tailoring them to the specific species’ and fisheries’ data

and context.

One way to do this is to evaluate candidate data-limited management frameworks using

management strategy evaluation (MSE; Smith, 1994; Punt et al., 2016). MSE uses an operating

model (OM) to represent a fish stock and the fisheries operating on it. The OM is used to

simulate resource dynamics in simulation trials and to generate pseudo data to evaluate the

performance of a management procedure. The management procedure is the combination of

pre-defined data, together with an algorithm to which such data are input to set a management

measure, such as a total allowable catch (TAC). This in turn is converted into a catch that is

removed from the OM in a feedback loop (Punt et al., 2016).

The application of MSEs has been mainly focused on data-rich situations, where enough data

are available to condition the OM using stock assessment models. A management procedure
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may be either model-based, where a stock assessment is used to estimate stock status and set

management measures (e.g. Kell et al., 2005), or empirical where a trend in an indicator is used to

set the catch (Hillary et al., 2016). MSEs for data-limited purposes are somewhat rarer, although

there are notable studies. For example, Carruthers et al. (2012) evaluated methods based on

catch data alone and found that catch-based methods were, on average, more negatively biased

than stock assessment methods that explicitly model population dynamics and use additional

fishing effort data. In a subsequent study, Carruthers et al. (2014) found that methods that rely

only on historical catches performed worse than maintaining current fishing levels and that only

methods that dynamically accounted for changes in abundance or depletion performed well at

low stock sizes. Geromont and Butterworth (2015a) tested a range of simple catch rules based

on historical catches, length data, or survey index data and found that such simple rules perform

well and could be used in practice. Punt et al. (2001) explored a range of empirical indicators

and noted that length- or weight-based indicators outperform catch rate indicators; however,

caution needs to be exercised about reference levels. A review of data-poor empirical harvest

strategies can be found in Dowling et al. (2015a).

Within ICES, simple catch rules have been developed for data-limited stocks (ICES, 2012b).

For example, the “2 over 3” rule aims to keep stocks at their current level by multiplying recent

catches by the trend in a biomass index:

Ay+1 = Ay−1

∑︁y−1
i=y−2 Ii/2∑︁y−3
i=y−5 Ii/3

, (6.1)

where Ay+1 is the newly advised catch for year y +1, Ay−1 is the previously advised catch [note:

this could be observed catch, Cy−1 e.g. when the advice is first produced, or when the advised

catch is no longer appropriate because a stock has undergone a benchmark; for the purposes of

this study, Cy−1 was used following the original definition in ICES (2012b)] and I is a biomass

index. This rule, in combination with a catch constraint (called uncertainty cap in ICES, limits

change in catch advice to no more than 20%) and precautionary buffer (which reduces the catch

advice by 20% if the stock is judged to be outside safe biological levels), is currently (as of 2021)

applied to give catch advice within ICES for category 3 data-limited stocks (ICES, 2018a).

The ICES “2 over 3” rule lacks a management target, can induce oscillatory behaviour

resulting in increased biological risk over time, and includes a time lag in the translation of
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changes in the biological stock into advice (ICES, 2013c, 2017e). An alternative catch rule,

making use of more data sources, has therefore been proposed (ICES, 2012c):

Ay+1 = Cy−1 r f b, (6.2)

where the advised catch Ay+1 is based on the previous observed catch Cy−1, multiplied by three

components r, f and b, each representing a stock characteristic. Component r corresponds to the

trend in a biomass index (I), component f is a proxy for the ratio FMSY (the fishing mortality

corresponding to the maximum sustainable yield, MSY) divided by the current exploitation

based on length data from the catch, and component b is a biomass safeguard that protects

the stock once the biomass index drops below a threshold. This rule is subsequently called the

rfb rule, referring to its three components. Initially, the rfb rule was merely a concept without

specifying what data should be used and how the components could be derived from them

(ICES, 2012c). Recently, the rule has been revisited by ICES (2017f) and suggestions made for

simulation testing and application to actual stocks. Several options for the three components

have been proposed, and initial simulation testing narrowed it down to only one option per

component (ICES, 2017e). This rfb rule is the focus of the present study, which aims to (i)

establish procedures to simulate data-limited fish stocks based on life-history parameters, (ii)

simulation-test the aforementioned catch rule, (iii) associate the performance of the catch rule

to life-history parameters, and (iv) provide guidance on the application of the catch rule and

thereby advancing the management of data-limited fisheries.

Jardim et al. (2015) tested a simplified version of the rule where components r and f were

tested one-at-a-time and component b excluded and concluded that the rule based on r [Equation

(6.2)] performed the poorest, and while the rule based on f was able to reverse decreasing trends

in biomass, it resulted in catch levels below MSY and could not prevent some stocks declining

when subject to over-exploitation.

As the purpose of this study is to test catch rules for data-limited stocks, assumptions and

approximations must be made. A similar approach to Jardim et al. (2015) was used where

stocks are simulated based on a set of life-history parameters and where fishing scenarios are

developed. The simulations were conducted in the Fisheries Library in R (FLR; Kell et al.,

2007) software suite, within an MSE framework originally developed by Jardim et al. (2017) for

data-rich stocks but adapted and extended to accommodate data-limited stocks.
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The study stocks are given in Table 6.1; there are 29 data-limited stocks from European wa-

ters (North Sea region, Celtic Sea region, Bay of Biscay, and widely distributed stocks) and they

encompass a wide range of life histories, including roundfish, flatfish, elasmobranchs, shellfish,

and demersal as well as pelagic species. Jardim et al. (2015) used averaged life-history paramet-

ers for species to simulate stocks; in contrast, in the present study, stock-specific parameters were

chosen, so that simulated stocks resemble real stocks in terms of biology (growth, productivity,

etc.). As this is a data-limited simulation approach, however, artificial fishing histories had to

be developed.

Table 6.1: The 29 stocks on which the operating models are based.

Scientific name Common name ID k (year-1)
Lophius budegassa Blackbellied angler ang3 0.08
Raja clavata Thornback ray rjc2 0.09
Sebastes norvegicus Golden redfish smn 0.11
Anarhichas lupus Atlantic wolffish wlf 0.11
Lepidorhombus whiffiagonis Megrim meg 0.12
Molva molva Ling lin 0.14
Raja clavata Thornback ray rjc 0.14
Scyliorhinus canicula Lesser spotted dogfish syc 0.15
Mustelus asterias Starry smooth-hound sdv 0.15
Lophius piscatorius Angler ang 0.18
Lophius piscatorius Angler ang2 0.18
Pollachius pollachius Pollack pol 0.19
Melanogrammus aeglefinus Haddock had 0.20
Nephrops norvegicus Norway lobster nep 0.20
Mullus surmuletus Striped red mullet mut 0.21
Spondyliosoma cantharus Black seabream sbb 0.22
Pleuronectes platessa European plaice ple 0.23
Scyliorhinus canicula Lesser spotted dogfish syc2 0.23
Argentina silus Greater argentine arg 0.23
Scopthalmus maximus Turbot tur 0.32
Chelidonichtys lucerna Tub gurnard gut 0.32
Merlangius merlangus Whiting whg 0.38
Scophthalmus rhombus Brill bll 0.38
Microstomus kitt Lemon sole lem 0.42
Engraulis encrasicolus Anchovy ane 0.44
Zeus faber John Dory jnd 0.47
Sardina pilchardus European pilchard sar 0.60
Clupea harengus Herring her 0.61
Ammodytes spp. Sandeels san 1.00

Given are the scientific and common names, a unique stock ID and the von Bertalanffy growth
parameter k.

There are a plethora of approaches on how to analyse the results of an MSE, and this

study focuses on the time series of stock metrics such as spawning stock biomass (SSB) and
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on summary statistics derived from stock metrics over the course of the projection period.

To determine which of the OM parameters could explain the performance of the rfb rule for

a specific stock, a penalised regression model (glmnet; Friedman et al., 2010) was deployed,

because such a model allowed the inclusion of correlated parameters (a particular feature of the

OMs) by imposing a penalty on them. In addition, penalised regression allows fitting the entire

elastic-net regularisation path from lasso to ridge regression (Hoerl & Kennard, 1988; Tibshirani,

1996; Zou & Hastie, 2005), where a lasso regression rejects non-crucial parameters and a ridge

regression retains all parameters but reduces their influence by penalising them, if necessary.

Another approach used is to find patterns in resultant time series. Simple groupings might

become apparent on visual inspection. A time series cluster analysis was employed because

it provides an objective statistical approach to grouping the results into clusters with similar

trajectories when no prior information about the clusters exists.

6.4 Methods

OMs were conditioned for 29 stocks, simulated based on a limited set of life-history parameters:

allometric parameters for length-weight conversion, a and b, von Bertalanffy growth model

parameters L∞, k, and t0 (von Bertalanffy, 1950), and age at 50% maturity a50. Based on

these data, using the FLR (Kell et al., 2007) package FLife, and closely following the approach

of Jardim et al. (2015), age-structured OMs were created. Growth was modelled with the

von Bertalanffy growth equation, recruitment by a Beverton-Holt stock recruit function with

steepness h = 0.75 (for the default scenario), virgin SSB set to 1000 (units) for all stocks, the

maximum age amax and plus-group set as the age (rounded up) where the stock reached 95% of

L∞, maturity modelled with a sigmoid function centred on a50, and fisheries selectivity modelled

with a sigmoid function where the first age at full selectivity equalled a50. Natural mortality

M was length-dependent, following Gislason et al. (2010), but converted to age using the von

Bertalanffy growth equation. Survey selectivity was modelled with a sigmoid function and the

inflection point set to 0.1amax, and the biomass index was derived by summing the survey catch

biomass over all ages. Catch length frequencies were generated by applying a simulated inverse

age-length key to the catch at age distribution. Full specifications, including equations, are

described in Chapter 5.
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Two fishing histories were created for all simulated stocks. Initially, the stocks were fished

at 0.5FMSY for 75 years, and subsequently for another 25 years in a roller-coaster or a one-

way fishing scenario (Figure 6.1). In the one-way scenario, the fishing mortality was increased

exponentially from 0.5FMSY to 0.8Fcrash over 25 years, with Fcrash defined as the lowest fishing

mortality that causes the stock to collapse in equilibrium. In the roller-coaster scenario, the

fishing mortality was increased from 0.5FMSY to 0.75crash, kept at 0.75Fcrash for 5 years, and

then reduced to FMSY by the end of the 25 years. After both fishing histories, the stocks

were severely depleted; however, in the one-way history, the stocks were at their lowest levels

and declining, whereas in the roller-coaster history the stocks had started to recover. This

exploitation state was then used as starting point for the MSE simulation.
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Figure 6.1: Median trajectories for SSB, mean fishing mortality, and catch relative to MSY
reference points for the 29 simulated stocks when managed with the rfb rule. Shown are the
historical fishing period (“history”, years -25 to 0) and the results of subsequently applying the
rfb rule (years 1 to 100). The top row shows the one-way fishing history and the bottom row
the roller-coaster fishing history.

6.4.1 Catch rule

The main catch rule tested is the rfb rule which sets catch advice by multiplying recent catch with

three factors corresponding to perceptions of stock characteristics based on catch and survey

data [Equation (6.2)]. Component r corresponds to the trend in a biomass index and is based

on the “2 over 3” rule [Equation (6.1)]:

r =
∑︁y−1

i=y−2 Ii/2∑︁y−3
i=y−5 Ii/3

, (6.3)
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where I is the biomass index. Component f is a proxy for the ratio FMSY divided by the current

exploitation based on length data from the catch:

f = L̄y−1
LF =M

, (6.4)

where L̄y−1 is the mean length in the catch above the length of first capture (Lc), weighted by

catch numbers at length, with Lc defined as the first length class having at least 50% of the mode

in the observed catch length frequency. The reference length LF =M is a proxy for the length

at MSY proposed by Beverton and Holt (1957), under the assumption that F = M . Using the

simplification that M/k = 1.5 the reference length can be calculated as (Jardim et al., 2015):

LF =M = 0.75Lc + 0.25L∞. (6.5)

Finally, component b of the rfb rule is a biomass safeguard protecting the stock when the

biomass index drops below a threshold:

b = min
{︄

1,
Iy−1

Itrigger

}︄
. (6.6)

Itrigger was based on the lowest historical biomass index value Iloss and defined as Itrigger =

1.4Iloss.

6.4.2 Projection

The OM was projected forward for a period of 100 years. Errors were implemented with a log-

normal distribution and included for the biomass index (SD = 0.2), recruitment (SD = 0.6),

life-history parameter L∞ (SD = 0.1), which is used both in the calculation of catch length

frequencies and in the calculation of the length reference point LF =M , catch numbers at length

(SD = 0.2), and implementation of the advice into catch (SD = 0.1). Note that no additional

uncertainty is included for Lc, which is already calculated from simulated observed data. The

error distributions were set prior to running the simulation, and random number deviates were

identical for all stocks. Based on these uncertainties, 500 replicates were created for each stock.
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6.4.3 Modifications to the catch rule

Various modifications of the rfb rule were explored and are detailed in Table 6.2. One option

tested was the addition of a multiplier x to the rfb rule:

Ay+1 = Cy−1 r f b x. (6.7)

The components of the rfb rule are multiplied to calculate the advised catch. This means,

conceptually, the multiplier x can be thought of as being part of component f , i.e. the multiplier

adjusts the reference length:

f ′ = f x = L̄y−1
LF =M

x = L̄y−1
LF =M /x

= L̄y−1
L′

F =M

(6.8)

where f ′ is the component f adjusted by x and L′
F =M is the reference length adjusted by x.

The value of the x can be below or above 1; x < 1 increases the reference length and makes

the rfb rule more precautionary, x > 1 decreases the reference length and makes the rule less

precautionary. Ultimately this means that a multiplier x < 1 does not lead to a continuous

decline in the advised catch over time but changes the target of the rfb rule.

In addition, the impact of including catch constraints was examined by including upper

constraints (maximum allowed increase in catch advice compared to previous advice), lower

constraints (maximum allowed decrease) and their combinations of upper and lower constraints.

By default, the management simulated here followed the ICES assessment cycle for data-

limited stocks (ICES, 2012b, 2018a). This meant that the rfb rule was applied in an intermediate

(assessment) year y based on data up to the previous year (y−1) and the TAC was set biennially

for the following 2 years y + 1 and y + 2. The data used in the rfb rule were from the years up

to the year before the intermediate year; i.e. y − 1 for the catch data for components Cy−1 and

f , y − 1 for the index for b, and years y − 5...y − 1 for r. The effect of time lags on management

was explored by including more recent data and also setting the TAC annually (Table 6.2).

6.4.4 Sensitivity to operating model assumptions

A sensitivity analysis of the performance of the rfb rule to OM assumptions was conducted. This

included investigations into steepness, recruitment variability, and observation uncertainties (see

Table 6.2). Full details and results of this analysis are provided in Appendix B.
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Table 6.2: Explored modifications of the catch rule and sensitivity analysis of operating model
parameterisation on the performance of the catch rule.

Modification Default value Alternative values
Catch rule modifications

Catch rule multiplier 1 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95
Catch constraints (including combinations)

Upper ∞ 1.1, 1.15, 1.2, 1.25, 1.3, 1.5
Lower 0 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9

Timing (relative to intermediate year y, including combinations)
Biomass index y − 1 y, y + 1
Recent catch y − 1 y
TAC interval (years) 2 (biennial) 1 (annual)

Parameter Default value Alternative parameterisa-
tions

Sensitivity analysis (explored in Appendix B)
Steepness h

Fixed 0.75 0.6, 0.9
Functional relationships Constant Linked to k, linked to L50/L∞

(Wiff et al., 2018)
Borrowed values 0.75 Species specific h from Myers et

al. (1999)
Uncertainty and variability

Recruitment variability (SD) 0.6 0.3, 0.9
Biomass index uncertainty (SD) 0.2 0.4, 0.6
Length-frequency uncertainty (SD) 0.2 0.4, 0.6

6.4.5 Perfect information scenario

Finally, to check whether the rfb rule worked when all the information available to it was

available without error, an additional scenario was run for all the simulated stocks and fishing

histories. For these scenarios, only recruitment variability was implemented. The survey index

was replaced with the SSB from the OM to remove the impact of survey selectivity, Itrigger

was set to Btrigger which, in agreement with ICES data-limited guidelines (ICES, 2018b), was

set to 0.5BMSY. This modification meant that the biomass threshold was set irrespective of

the historical exploitation and was comparable for all stocks. The reference length for the f

component of the rfb rule was defined as the equilibrium length obtained in the OM when fishing

at FMSY.

6.4.6 Performance of the catch rule

The performance of the rfb rule was assessed based on six performance statistics, computed over

the entire 100-year projection period and 500 replicates:
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i. catch/MSY: the median of the distribution of catch/MSY,

ii. collapse risk: risk of stock collapse, i.e. the proportion of the projected stock where the

stock is < 0.1% of virgin SSB,

iii. Blim risk: risk of the stock falling below Blim [proportion of the projected stock where

the stock is below Blim, defined as the stock level where recruitment is at 70% of the

recruitment achieved at virgin SSB, i.e. 16.3% of virgin SSB for all stocks, because they

had the same value of steepness (h) for the Beverton-Holt stock recruitment relationship],

iv. ICV: the median of the distribution of inter-annual variability in catch, calculated as

|(Cy − Cy−v)/Cy−v|, where Cy is the catch for the year y in which a TAC has been set and

v is the TAC period, e.g. v = 2 for a biennial TAC, and

v. SSB/BMSY and F/FMSY the median of the distribution of stock status (SSB and F relative

to MSY reference points BMSY and FMSY, respectively).

Initial analyses revealed that, for some stocks and scenarios, the stocks collapsed, and catches

were reduced to zero as a result. Depending on the stock productivity, some stocks subsequently

recovered towards virgin biomass due to the zero catch. This behaviour was deemed inappropri-

ate for further exploration of the performance as it implied a reduced risk. Consequently, when

running the simulations, once a replicate of a scenario had collapsed, the stock level and catch

in subsequent simulation years were both set to zero.

6.4.7 Penalised regression

Many of the life-history parameters (both primary parameters used to create stocks and para-

meters derived from the simulated stocks) are highly correlated. For example, natural mortality

M , von Bertalanffy growth model parameter k, FMSY, MSY, population growth rate g (at the

limit of zero stock size), and conditional growth rate gc (growth rate at MSY) had positive Pear-

son correlation coefficients ρ ≥ 0.92 between each other, and k and L∞ correlated negatively

with ρ = −0.70.

Therefore, to determine which of the stock characteristics influenced the performance of the

rfb rule, a penalised regression model was applied (glmnet; Friedman et al., 2010). A multi-

response Gaussian model (Simon et al., 2013) was applied that selected the predictor variables

that could explain all six performance statistics (catch/MSY, collapse risk, Blim risk, ICV,
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SSB/BMSY and F/FMSY). First, only the primary input parameters were used as predictor

variables: a, b (length-weight relationship), L∞, k , t0 (von Bertalanffy growth model para-

meters), and a50 (age at 50% maturity). Second, the analysis was repeated with additional

derived parameters: α, β (Beverton-Holt stock recruitment model parameters), spr0 (spawning

potential ratio), Lopt (mean length when the stock is at MSY level), g, gc (population growth

rates), M (natural mortality), M/k, FMSY/M , and BMSY/B0 (BMSY relative to virgin biomass,

i.e. location of peak in production curve).

6.4.8 Clustering

A cluster analysis of the relative stock status SSB/BMSY time series was conducted using the

dynamic time warping technique (Berndt & Clifford, 1994; Aghabozorgi et al., 2015) as distance

measure. Several clustering algorithms (partitional, fuzzy, hierarchical) were trialled. Partitional

and fuzzy clustering imply stochasticity, because the results depend on the random location of

where the algorithm starts. This proved unreliable for the cluster analysis presented here,

because the results were unstable, and even iterating the analysis did not lead to stable clusters.

Hierarchical clustering, on the other hand, does not rely on stochasticity for the formation of

the clusters. In addition, once a hierarchical cluster analysis is conducted, the output can be

visualised in a dendrogram and any arbitrary number of clusters can be pursued without having

to rely on potentially biased cluster validity indices to select the optimum number of clusters.

6.4.9 Data and software

The simulations were conducted in R, a free software environment for statistical computing and

graphics (R Core Team, 2020) and the MSE framework was based on the Fisheries Library in R

(FLR; Kell et al., 2007) software suite and several of its R packages. The OMs were created from

life-history parameters with FLR’s FLife package (https://github.com/flr/FLife). The structure

of the simulation framework followed the assessment for all (a4a) initiative on a standardised

MSE framework jointly developed by Jardim et al. (2017). Initially, this chapter’s work was

coded in stand-alone scripts. Concurrently to the work of this study, the a4a MSE framework was

formalised into an R package (Mosqueira & Jardim, 2020, https://github.com/flr/mse). This R

package was then adapted during this PhD project in order to handle the data-limited situation

of this chapter (https://github.com/shfischer/mse). The original scripts for the simulations

were subsequently adapted for running in this R package without compromising reproducibility.
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The full source code, input data and instructions on creating the OMs and running the MSE

presented in this study are available from GitHub (https://git.io/JIidn).

6.5 Results

Figure 6.1 shows the median trajectories for the 29 simulated stocks when the rfb rule was imple-

mented for the two fishing histories. In the one-way fishing history, 10 (anchovy, black seabream,

brill, herring, John Dory, lemon sole, sandeels, European pilchard, tub gurnard, and whiting)

out of the 29 stocks collapsed by the end of the 100-year simulation period. In the roller-coaster

fishing history, two additional stocks (angler and pollack) collapsed. The remaining stocks sur-

vived and displayed stock-specific long-term oscillations. One stock, megrim, approached virgin

SSB and the other stocks reached terminal biomass values between 12 and 74% of virgin SSB.

In general, the rfb rule was influenced most by component r representing the trend from the

biomass index [Equation (6.3)]. Figure 6.2 shows the time series of the individual components

for two example stocks (pollack and herring). This behaviour is likely because changes in the
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Figure 6.2: Components of the rfb rule (r, f , and b) and their product (r f b, which scales the
recent catch) for two example stocks: herring (her) and pollack (pol). The higher the deviation
of a component from one (up or down), the higher is its contribution in the rfb rule. Please note
that for herring, the stock collapsed in most simulated replicates (the median SSB collapsed
after 6 years) and in the distributions shown for the components, these collapsed replicates were
excluded because they did not provide any stock status information.
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stock size can be observed directly in the biomass index and have a relatively high magnitude.

Changes in the mean catch length are commonly smaller and the time it can require until changes

in the fishing pressure translate into the mean catch length can be longer. In the beginning, after

the implementation of the rfb rule, component b [Equation (6.6)] acted and reduced the catch;

however, this effect lasted only for a few years. Component f [Equations (6.4) and (6.5)] gave

some information throughout the entire simulation period, but at a markedly lower magnitude

compared to r. Figure 6.3 presents the SSB and the catch for the two stocks, including individual

simulation replicates.
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Figure 6.3: Catch and SSB for two stocks, pollack (pol) and herring (her), when managed with
the rfb rule for the first 20 years of the projection period. Shown are the median of the 500
simulation replicates (first row) and 5 example replicates (subsequent rows).

6.5.1 Penalised regression

Performing a lasso regression with the primary input and the full parameter set (including de-

rived parameters) both resulted in a model fit that selected solely the von Bertalanffy growth

parameter k to explain the six performance statistics for the one-way fishing scenario (Figure
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6.4). Allowing elastic-net regularisation in the penalised regression model led to minor improve-

ments in the model fit (the mean squared error was reduced from 0.85 to 0.73) but came at

the cost of adding complexity to the model by returning non-zero coefficients for all supplied

input parameters. Consequently, k was selected as the single most important factor for the

performance of the rfb rule for the simulated stocks. Higher values of k were linked to higher

risks (both collapse risk and Blim risk) and catch variability and lower or zero long-term catch,

F/FMSY and SSB/BMSY. The results were similar for the roller-coaster scenario.
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Figure 6.4: Six performance statistics vs. the von Bertalanffy growth model parameter k for
the tested rfb rule and the one-way fishing history for all 29 stocks. The solid lines show the fit
from the lasso regression model, and the dotted lines show a linear regression for each individual
performance statistic.

6.5.2 Clustering

Clustering was performed on the time series of the annual medians of SSB/BMSY of the entire

100-year projection period for the 29 simulated stocks. Figure 6.5 shows the results from the

hierarchical clustering for up to four clusters for the one-way fishing history. Hierarchical cluster-

ing does not compute centroids for the clusters; for plotting purposes (Figure 6.5b), centroids for
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the clusters were calculated post hoc as the annual average of the SSB/BMSY values of all stocks

within a cluster. If all stocks were kept in a single cluster, the centroid SSB/BMSY trend showed

a recovery after the start of the MSE simulation and equilibrated at a level slightly > 1. The

first separation in the hierarchical cluster distinguished between two distinct patterns (second

row in Figure 6.5b); the first cluster was composed of stocks that experienced early peaks and

collapsed within ∼25 years, whereas the stocks in the second cluster survived (apart from one

exception; black seabream). This split corresponds well to the von Bertalanffy k values for these

stocks (Figure 6.5c). The first cluster (collapsed) is comprised of stocks with k ≥ 0.32 year−1.

On the other hand, the stocks with lower k (k ≤ 0.32 year−1) survived. There is an overlap for

the k = 0.32 year−1 stocks: one survived (turbot) and one collapsed (tub gurnard).
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Figure 6.5: Results of the hierarchical clustering analysis of relative SSB for the one-way fishing
history. (a) A dendrogram of the time series for the 29 simulated stocks, the names correspond
to the stock IDs defined in Table 6.1. The y-axis corresponds to the dynamic type warping
distance between the time series. (b) The median SSB/BMSY times series for all stocks (dashed
lines) and the centroids (solid bold line). Rows represent the number of clusters, and each
column is one cluster. (c) von Bertalanffy growth model parameter k for all stocks, sorted in
ascending order and colour-coded for the clusters shown in (b).
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Following the dendrogram further, the next two splits occurred within the cluster of surviving

stocks. First, there is a separation of stocks that stay ∼ 1.5BMSY in the long term and the ones

that end up ∼ 3BMSY (third row of Figure 6.5b). Second, the stocks reaching levels 1.5BMSY are

divided further into one cluster where the SSB converged at ∼ 2BMSY and one cluster where the

SSB stays ∼ BMSY (fourth row of Figure 6.5b). In terms of k, these stocks overlap when there

are four clusters and no clear distinction is evident. Moving further along the dendrogram, these

clusters are divided further; however, clusters increasingly represent individual stocks instead of

general trends, because stocks are singled out as the number of clusters grows. The clusters in

Figure 6.5 are colour-coded, and this colour code is maintained throughout the study. Results

in this figure are for the one-way trip fishing history, but results for the roller-coaster fishing

history are almost identical when considering four clusters.

6.5.3 Modifications to the catch rule

Adding a multiplier [x in Equation (6.7)] of less than one to the rfb rule reduced the risk (both

collapse risk and Blim risk) for all stocks and for both fishing histories (Figure 6.6). This risk

reduction was a result of higher terminal SSB values: the smaller the multiplier, the higher the

SSB values, capped at the top at the virgin biomass level. For the stocks where the median SSB

collapsed during the simulation period (cluster 1), adding the multiplier delayed this collapse,

and by reducing the multiplier further, the collapse was avoided altogether. This behaviour of

the SSB trajectory was stock specific. For example, in the default rfb rule, the median SSB of

anchovy in the one-way fishing scenario reached zero 12 years after the start of the simulation

and adding a multiplier of only 0.9 avoided this collapse. On the other hand, pilchard and John

Dory collapsed in the roller-coaster fishing history after 5 years and this collapse could only be

averted by implementing a multiplier ≤ 0.7.

The performance of the rfb rule for these cluster 1 stocks was highly sensitive to small

changes in the multiplier. Once a threshold multiplier was reached, the long-term stock levels

increased rapidly and overshot BMSY, thereby foregoing catch. Stocks in cluster 2 were kept

∼ BMSY in the long term when the rfb rule was applied without a multiplier. Introducing the

multiplier for these stocks reduced their risks but moved them above BMSY. Stock levels for

stocks from clusters 3 and 4 were shifted further above BMSY when the multiplier was added.

In the one-way fishing history, for 13 of the 29 stocks tested, adding the multiplier reduced the

catch; this was also the case for 8 stocks in the roller-coaster fishing history. The maximum
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Figure 6.6: Effect of implementing a multiplier to the rfb rule on the six performance statistics
for the 29 simulated stocks and both fishing histories. The clusters correspond to the ones
defined in Figure 6.5.

catch for cluster 1 (collapsed) stocks occurred at multiplier levels between 0.7 and 0.9, but the

peak was substantially below MSY. For the remaining stocks, the catch peaked at multipliers

≥ 0.9. When considering all stocks together, there does not seem to be a single multiplier that

increases risk performance for all stocks without jeopardising catch for some.

Implementing an upper catch constraint reduced the risks for all stocks, and more restrictive

constraints led to lower risks (Figure 6.7a). The upper constraint leading to the maximum

catch was stock specific and occurred at constraints between 1.1 and no constraint. However,

for most stocks, the catch is relatively stable for constraints ≥ 1.2 and this value seems to

be a reasonable compromise between risk reduction and maximising catch. Including a lower

constraint on the catch increased the risk of stock collapse and resulted in a subsequent reduction

in catch. If the lower constraint was implemented in combination with an upper constraint,

for some stocks, a small peak in catch was observed at lower constraint levels > 0 and < 1.

Figure 6.7b shows the effect of including lower catch constraints on the performance of the rfb
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Figure 6.7: Effect of catch constraints on three performance statistics. (a) The effect of upper
catch constraints without a lower constraint. The points above an upper catch constraint of
1.5, connected with thin lines, indicate the performance when no upper catch constraint was
implemented. (b) The effect of lower catch constraints in combination with an upper catch
constraint of 1.2. The clusters correspond to the ones defined in Figure 6.5.

rule in combination with an upper constraint of 1.2. More restrictive lower constraints (i.e.

restricting catch reductions) caused a large increase in risks and a large decrease in catch, with

this behaviour being particularly pronounced at constraint levels > 0.7. Below 0.7, the risks

and catches were relatively stable.

For the stocks surviving the default implementation of the rfb rule (k ≤ 0.32 year−1), us-

ing more recent data and setting the TAC more frequently improved performance by reducing

oscillations and reaching final biomass values earlier (Figure 6.8). The lowest fluctuations were

observed when the TAC was set annually, the catch data provided up to the intermediate year,

and the survey data up to the beginning of the advice year. The terminal biomass values were

similar irrespective of the timing. One exception is black seabream (not shown), which collapsed

when the rfb rule was implemented with default parameters, but all tested combinations resulted

in stock levels just above BMSY. Some of the high-k stocks (cluster 1) could be saved; however,
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Figure 6.8: Effect of time lags for the data used in the rfb rule and periodicity of TAC setting
(annual vs. biennial) for four example stocks (sorted by von Bertalanffy k) in the one-way
fishing history. The timing is relative to the intermediate year (0); −1 refers to the year before
the intermediate year and +1 refers to the year after the intermediate year. Relative timing is
distinguished by line type, and TAC period by line shading.

three stocks (John Dory, pilchard, and herring) still collapsed even if the TAC was set annually

and the most recent data were used.

6.5.4 Perfect information scenario

When the rfb rule was implemented with perfect information and knowledge (i.e. the SSB from

the OM was used as the index and Itrigger set to 0.5BMSY from the OM), the performance of

the rfb rule was substantially improved for the low-to-medium-k stocks (k ≤ 0.32 year−1) and

most converged towards BMSY, indicating that the rfb rule did work under these unrealistically

perfect conditions (Figure 6.9). Performance was not improved for the higher-k stocks from

cluster 1. These stocks still collapsed early and only the highest-k stock, sandeel, showed a

recovery to very high biomass levels, but this behaviour could be attributed to the stock being

close to collapse, with catches reduced to very low levels, and consequently, the stock could

recover with almost no fishing activity.

6.6 Discussion

This study simulation tested a simple catch rule (the rfb rule), making use of proxy MSY

reference points for a range of data-limited fish stocks. The main result was that the performance

of the rfb rule was stock specific and could broadly be linked to life-history characteristics, with
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Figure 6.9: Application of the rfb rule with and without perfect information for eight example
stocks (as defined in Table 6.1) for the one-way fishing history. In the perfect information
scenario, no uncertainty, apart from recruitment variability, has been implemented; the survey
is an exact representation of the SSB and Itrigger = 0.5BMSY.

the von Bertalanffy growth parameter k emerging as the most important one from a penalised

regression model.

It was clear from a visual inspection of the results that the response of stocks to the applica-

tion of the rfb rule could be organised into different groups and, therefore, a time series clustering

approach using dynamic time warping was adopted. The relative stock status SSB/BMSY was

selected as a time series index because it provided the overall best indicator of the performance

of the rfb rule over time. Biomass was used in relative terms because the rfb rule’s long-term

target is MSY, and consequently, both undershooting (overfishing) and overshooting (losing

yield through fishing below MSY) of BMSY could be identified and was comparable across all

simulated stocks. Both the clustering analysis and the penalised regression approach indic-

ated that there is a clear relationship between the life histories of the simulated stocks and the

performance of the rfb rule. The most important finding is the separation of the simulation

trajectories into two groups based on the results of the cluster analysis: one where the stocks

collapsed during the simulation and the other where the stocks survived and ended up at or

above BMSY. The split corresponded well to the von Bertalanffy growth parameter k and the
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rfb rule seemed to perform reasonably for stocks with k < 0.32 year−1 (species with slower indi-

vidual growth), but very poorly for stocks with k > 0.32 year−1 (species with faster individual

growth). The k < 0.32 year−1 stocks reached levels of between BMSY and 3BMSY, i.e. stock

collapses were avoided in all but one case, but frequently there was a loss in yield compared to

the yield achieved when fishing at FMSY.

The result that the rfb rule performed worse for the more productive stocks (with higher

k) compared to the less productive stocks (with lower k) might at first glance appear counter-

intuitive. The performance of the rfb rule as measured by the summary statistics, however, is an

emergent property of the interaction between the OM and the catch rule. The advised catch was

mainly influenced by the r component of the rule (the trend in the relative index of abundance;

Figure 6.2), and stocks with higher k are inherently more variable, which in turn leads to higher

fluctuations in catch. When subjected to the rfb rule, the higher-k stocks collapsed early during

the simulation. This behaviour can be attributed to an initial rapid recovery, which resulted in

an increase in catch (Figure 6.3). Once the stocks started to decline again, however, the catch

was not reduced quickly enough to avoid stock collapse. This undesirable feature is caused

by the design of the rfb rule, which bases the newly advised catch on the previous catch and

observed data with a time lag. Since the less productive stocks (those with low k) were also less

variable, the rfb rule was sufficiently reactive to avoid stock collapse.

The threshold of k = 0.32 year−1 can likely be explained by the biology of the species.

Species with lower individual growth (k < 0.32 year−1) are long-lived, populations consist of

many age classes, and are characterised by relatively low natural mortality. Examples of such

species are elasmobranchs (e.g. thornback ray), deep sea species (e.g. redfish) and demersal

flatfish (e.g. European plaice). Stocks with k > 0.32 year−1 exhibit faster individual growth

(i.e. reach adult size faster), populations consist of fewer age classes, and are characterised

by higher natural mortality. This means that the population dynamics of such species are

more dynamic compared to slower-growing species and they are more impacted by changes in

recruitment, e.g. through environmental influences. Examples are faster-growing flatfishes (e.g.

brill), larger pelagic species (e.g. John Dory) and small pelagics (e.g. anchovy).

Previous studies have tested simple empirical data-limited catch rules with various simu-

lated stocks (e.g. Jardim et al., 2015), or based OMs on knowledge from fully analytical stock

assessments (e.g. Geromont & Butterworth, 2015a; Carruthers et al., 2016). In the simulation

exercise of Carruthers et al. (2016), various data-limited methods were tested, but only three
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stocks (Pacific herring, Atlantic bluefin tuna, and Pacific canary rockfish) were simulated and,

therefore, possible inferences from life histories were limited. Jardim et al. (2015) tested a sim-

plified version of the rfb rule tested here, including only a single component at a time (either

r using survey data or f using length-frequency data). The results from their simulation study

are in agreement with the current work, showing a wide range of stock trajectories and yields

often below MSY. The basis for the simulation of the stocks in Jardim et al. (2015) was aver-

aged life-history parameters to generate a variety of life-history traits. The work presented here

went one step further and used life-history parameters from real stock units; by doing so, it was

possible to link the performance of the rfb rule back to the original life-history parameters.

Modifications to the rfb rule (multipliers, catch constraints, using more recent data) were

able to improve its performance. However, the improvement was stock specific and a trade-off

between yield and risk was evident. Although the application of the multiplier always reduced

the risk, the stocks frequently ended up above BMSY and the rfb rule was overly reactive to

minor changes in the multiplier for higher-k stocks, not a good feature in a situation of high

uncertainty. For stocks for which the rfb rule kept the stock at or above BMSY in the long term,

the multiplier moved the stock level further away from BMSY and reduced yield. Stocks that

collapsed when the default rfb rule was applied (the higher-k stocks) could be saved, but only

at the cost of moving the stocks far above BMSY and losing yield.

Regarding the catch constraint, an upper limit of 1.2 was deemed appropriate because the

long-term yield hardly changed for most stocks if less restrictive constraints were implemented;

furthermore, this value provides an important reduction in risk compared to the application of

the rfb rule without any constraints. For this level of upper constraint, a lower constraint of 0.7

seemed to be a suitable choice because implementing more restrictive lower constraints would

cause a large increase in risk and a drop in yield. Less restrictive lower constraints did not have

much impact on either yield or risk.

As could be expected, more recent data did improve the performance of the rfb rule, mainly

by reducing oscillations, but this approach did not prove successful for all high-k stocks.

Challenges remain for the catch rule tested here. For example, the components of the rfb

rule make use of different commercial and scientific data and are designed to account for stock

dynamics. However, if just one of the components of the rfb rules fails or produces very low

(close to zero) or high values, it will inevitably overrule the other components and dominate the

final catch advice; in such circumstances, the use of the catch constraints becomes important.
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The analysis into the components of the catch rule showed that the rfb rule is mainly dominated

by the trend in the index, frequently masking information from the other components. The

biomass safeguard is important to recover the stock above a threshold, but depending on how

this level is set, it may not be effective enough (e.g. if the threshold is set too low). The

problem of dominant components of the rfb rule can be dealt with through variable weighting

of the different components and is explored in subsequent chapters.

If there is perfect information available (catch data, survey index, mean length in the catch)

and reference points were set correctly according to MSY, then the rfb rule performed well and

approached the desired MSY target for low-to-medium-k stocks. The results from these perfect

information scenarios showed the importance of setting reference points appropriately, because,

for example, setting the index trigger value dependent on the fishing history based on the lowest

ever observed value governed where the biomass ended up. The lower-k stocks were less depleted

relative to BMSY and, therefore, the trigger point in the b component of the rfb rule was higher,

which in turn resulted in a higher terminal biomass when the stocks were subjected to the

rfb rule. In a real-life application of the rfb rule to data-limited stocks, reference values are

uncertain, possibly impeding the performance of the rule. The following two chapters (Chapters

7 and 8) explore more flexible formulations of the rfb rule, including changing the period used

to derive the stock trend and weightings of the individual components of the rfb rule. Chapter

11 considers the application of the rfb rule to three case study stocks for which more data are

available.

During this work, concerns were raised about the appropriateness of the OM assumptions.

This study simulated data-limited stocks, and assumptions were needed due to a lack of in-

formation. However, extensive sensitivity tests of the results to OM assumptions have been

conducted (Table 6.2) and are described in Appendix B. One assumption was to use a constant

recruitment steepness of 0.75 in the recruitment model for all stocks. Steepness is notoriously

difficult to estimate, particularly for data-limited stocks for which no analytical assessments ex-

ist. This issue was addressed by conducting additional sensitivity runs with different steepness

levels (lower and higher), borrowing values from previous studies, and imposing relationships

between steepness and life-history parameters. The results were generally insensitive to the

steepness assumptions. The additional sensitivity tests on variability and uncertainty showed

that the results of this study are largely robust and the conclusions valid irrespective of these

model assumptions (see Appendix B).
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The starting point for the simulations in this study represented highly depleted stocks and

might be considered as a worst-case. This condition was used to examine whether the rfb

rule was able to correctly identify the depletion and recover stocks. In addition, due to the

long simulation period (100 years), all stocks moved away from their initial state during the

simulation and this provided insight into whether a long-term equilibrium was reached. In the

following chapters, the rfb rule is modified to explore if specific pre-defined management targets

can be achieved. For this purpose, alternative fishing histories (e.g. starting from a less-depleted

state) and the length of the projection are considered.

In nature, individual growth varies between individuals in the same population. The Rosa

Lee phenomenon describes the effect that observed individual growth of fish can appear trun-

cated because faster-growing individuals in a population are removed from the population at

a younger age due to size-selective fishing (Lee, 1912; Kraak et al., 2019). In contrast, slower-

growing individuals in the same population survive longer. This phenomenon can cause changes

in the observed individual lengths of fish over time, e.g. when fishing pressure or selectivity

changes. The stock dynamics in the present simulations are unaffected by this phenomenon

because the operating models were age-structured and length data was only generated as aux-

iliary information for informing management procedures. Furthermore, growth was modelled

deterministically, i.e. did not vary between individuals and fishery selectivity did not change

over time. Future studies could consider the possible influence of the Rosa Lee phenomenon on

management procedures such as the rfb rule as a robustness test, given that length data and

length-based reference values are used. However, the impact might be minor because changes

in growth could be detected in observations and lead to a periodic revision of length reference

values to account for these changes. Kraak et al. (2019) recommend that the Rosa Lee phe-

nomenon should be considered in simulations when fishery selectivity changes, which was not

the case in the present study.

6.7 Conclusion

This chapter presented the first simulations of the rfb rule, an empirical management procedure

suitable for data-limited fisheries management. These simulations were conducted using MSE

and the generic OMs developed in the previous chapter. The results revealed that the man-

agement performance of the rfb rule depended on the life history characteristics of the fished
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species. There was a clear split between species with slower individual growth, for which the rfb

rule delivered a reasonable management performance, whereas the performance was poor with

high risks of stock depletion and collapse for species with faster individual growth. This is an

indication that a one-size-fits-all approach is unlikely to work. The management performance

could be improved by modifying the rfb rule; however, the results were stocks-specific. The fol-

lowing chapter will explore options to formalise measuring management performance and apply

an optimisation procedure based on a genetic algorithm to improve fisheries management.
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Chapter 7

Using a genetic algorithm to

optimise a data-limited catch rule1

1This chapter is an adaptation of Fischer et al. (2021a). Contains public sector information licensed under the
Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).
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7.1 Foreword

The work presented in this chapter builds on the initial simulations testing of the empirical

management procedure (the “rfb rule”) in the previous chapter and aims to improve the man-

agement performance of the rule by developing an optimisation procedure. Preliminary results

were presented at the ninth and tenth International Council for the Exploration of the Sea

(ICES) Workshop on the Development of Quantitative Assessment Methodologies based on

LIFE-history traits, exploitation characteristics, and other relevant parameters for data-limited

stocks (ICES WKLIFE IX and X; ICES, 2019c, 2020a). Subsequently, additional analyses were

undertaken, and the work was peer-reviewed and published in Fischer et al. (2021a):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2021a). Using a genetic

algorithm to optimize a data-limited catch rule. ICES Journal of Marine Science, 78 (4),

1311–1323. https://doi.org/10.1093/icesjms/fsab018

The following sections in this chapter are an adaptation of this publication.

7.2 Abstract

Many data-limited fish stocks worldwide require management advice. Simple empirical manage-

ment procedures have been used to manage data-limited fisheries but do not necessarily ensure

compliance with maximum sustainable yield objectives and precautionary principles. Genetic

algorithms are efficient optimisation procedures for which the objectives are formalised as a

fitness function. This optimisation can be included when testing management procedures in a

management strategy evaluation. This chapter explored the application of a genetic algorithm

to an empirical catch rule (the “rfb rule”) and found that this approach could substantially im-

prove the performance of the catch rule. The optimised parameterisation and the magnitude of

the improvement were dependent on the specific stock, stock status and definition of the fitness

function. The genetic algorithm proved to be an efficient and automated method for tuning

the catch rule and removed the need for manual intervention during the optimisation process.

The approach could also be applied to other management procedures, case-specific tuning, and

even data-rich stocks. Finally, a recommendation is made about the phasing out of the current

generic ICES “2 over 3” advice rule in favour of case-specific catch rules of the form tested here,

although neither work well for fast-growing stocks.
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7.3 Introduction

The majority of the world’s fish stocks are data-limited, and analytical stock assessments do not

exist (Rosenberg et al., 2014). Nevertheless, fisheries scientists and managers are often requested

by stakeholders to advise on fishing opportunities in order to ensure the sustainability of fisheries

activities.

ICES provides advice on fishing opportunities for many fish stocks in the Northeast Atlantic.

For this purpose, fish stocks are classified into six categories, depending on the availability of

data and the applicability of assessment methods (ICES, 2012b, 2019a). Data-rich stocks fall

into the highest category (category 1). For these stocks, analytical stock assessments offer

quantitative information about stock metrics, and ICES provides advice based on a framework

that includes considerations of the precautionary approach (Garcia, 1996) for biological risk

and target fishing levels that are defined by reference points following the maximum sustainable

yield (MSY) principle (ICES, 2019a). The lowest category is category 6 and includes data-poor

bycatch stocks with negligible landings. In between are data-limited stocks, and for these, ICES

bases its advice on a precautionary approach (ICES, 2012b).

ICES category 3 data-limited stocks are stocks for which survey-based assessments indicate

trends in stock dynamics (ICES, 2012b). Even though some survey indices exist for these stocks,

it is not always possible to apply simple stock assessment methods, such as biomass dynamic

models or simplified integrated models (e.g. extended simple stock synthesis; Cope et al., 2015).

This might be because of short time-series, conflicting signals from the catch, catch per unit

effort, survey and length data, lack of contrast in these data, or model convergence issues.

Management procedures based on empirical rules are an alternative and can sometimes perform

at least as well as those based on analytical methods (Carruthers et al., 2014; Geromont &

Butterworth, 2015b). For category 3 stocks, ICES typically applies a “2 over 3” rule to an

index of abundance (the average of the last two values divided by the average of the three

values preceding those) and has introduced MSY principles for stock status evaluations based

on MSY proxy methods (ICES, 2018b). However, this approach considers solely the application

of a precautionary buffer to reduce the catch advice based on the “2 over 3” rule in case of a

non-favourable stock status and does not include any MSY targets. It is therefore not explicitly

aligned towards MSY.
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Fischer et al. (2020, see Chapter 6) deployed a management strategy evaluation (MSE; Smith,

1994; Punt et al., 2016) approach to simulation test an alternative catch rule that includes an

MSY target, which is based on an empirical rule of the form:

Ay+1 = Cy−1 r f b. (7.1)

This harvest control rule (the rfb rule) sets the catch advice for the following year (Ay+1)

on the recently observed catch (Cy−1) multiplied by three components; a biomass trend r, an

exploitation proxy f , and a biomass safeguard b. Component r represents the recent stock trend

derived from a biomass index, f is calculated by comparing the recent mean length in the catch

to a length-based proxy for FMSY, and b reduces the catch when the biomass index falls below

a threshold.

The rfb rule is currently being considered by ICES (ICES, 2017e, 2018c, 2019c) as a potential

successor for assessing category 3 data-limited stocks. The simulations of Fischer et al. (2020,

described in Chapter 6) showed that its performance is crucially dependent on the life history of

the stock, and in particular on the von Bertalanffy growth parameter k. The rfb rule performed

reasonably well for stocks with k ≤ 0.32 year−1 (slower-growing species) by keeping these stocks

at or above BMSY, but very poorly for stocks with higher k (fast-growing and small pelagic

stocks), resulting in increased risks of stock collapses in these cases.

In an MSE context, the term tuning describes the process of adjusting the control paramet-

ers of a management procedure to improve performance statistics for the purpose of meeting

specific management objectives in a simulation (tRFMO, 2018). This concept has also been

considered at the International Whaling Commission to adapt management procedures to bal-

ance management objectives such as risk, stock status, and aboriginal subsistence whaling needs

(Givens et al., 1999). In the previous chapter, some attempts were made to improve the per-

formance of the rfb rule by manually tuning the rule by the addition of multipliers (to change

the target level) and catch constraints (to limit catch variability). The results showed that the

rfb rule was mainly dominated by the stock trend (component r), whereas the remaining com-

ponents had less influence on the newly advised catches. The logical course of action is to apply

weights to the three components in order to reduce or increase their influence. The application

of weights should not just be a process of adding arbitrary correction factors but implemented

with consistent and logical rules. Trying to manually modify a single component of the rfb
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rule or a limited combination of components to improve performance might be feasible with

a grid search; however, such a manual optimisation task is an onerous activity and decisions

are potentially arbitrary. Givens et al. (1999) note that depending on the way optimisations

and approximations are specified, outcomes might give preference to different approaches, e.g.

by focusing only on specific management goals. If the components are going to be tuned on a

case-specific basis and their interactions considered in a multi-dimensional search, then there are

an almost infinite number of scenarios and potentially confounding results between parameters,

which means traditional approaches are impractical.

In the absence of predefined and clearly articulated management objectives, the results of

such a tuning exercise must be carefully examined, and this can easily lead to a time-consuming

activity. For example, trade-offs between opposing objectives need to be considered, such as

maximising catch and biomass or reducing depletion risk and catch variability. Moreover, trust

is a crucial element and stakeholders will need to agree to the procedure and accept outputs

and revisions in the light of new developments. Therefore, the application of an automated or

semi-automated optimisation procedure without the need for manual intervention is desirable.

For this approach, the objectives of the optimisation process must be precisely defined and be

formalised as an objective function.

In this study, the use of a genetic algorithm as an optimisation method is explored. Genetic

algorithms belong to the more general class of evolutionary algorithms which are inspired by

the principles of biological evolution (Darwin, 1859) and can be used as an optimisation pro-

cedure. In a genetic algorithm, the functional behaviour of genetic operators is mimicked in

order to create variability in a population, which is then subjected to selection in a competitive

environment (Holland, 1992).

The genetic algorithm approach was already well developed in the 1970s but did not gain

much attraction in the scientific community initially (Holland, 1992). However, with the de-

velopment of faster and more advanced computers, its application became more feasible. To

date, genetic algorithms have been applied to optimisation problems in various scientific fields,

including the design of integrated circuits, communication networks, and stock market portfolios

(Holland, 1992). In fisheries science, genetic algorithms have, for example, been applied to the

optimisation of bioeconomic models (Mardle et al., 2000), or fitting stock-recruitment models

(Chen et al., 2000) and growth functions (Taylor & Mildenberger, 2017).
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Numerous other optimisation methods exist; however, not all of them are equally applicable

to specific optimisation problems. The genetic algorithm approach was chosen because it is a

flexible optimisation approach, allows the inclusion of computing-intensive fitness functions, and

has been shown to perform well for various optimisations. It is also able to consider many possible

solutions simultaneously within one generation, and it is, therefore, less prone to converging on

local optima (Chen et al., 2000).

The genetic algorithm can be applied to the optimisation of management procedures that

include harvest control rules such as the rfb rule. For a control rule to be optimised, there

is a need for it to be adaptable. This adaptability can be achieved by making the existing

components of the rule more flexible (e.g. by changing the definition of a component) or through

the inclusion of additional parameters (e.g. weighting components or a multiplier) that can be

used for tuning. An individual of the population in the genetic algorithm is defined by its genetic

material (the genotype). In the context of a control rule, parameters could be considered as

genes. All parameters together form the genotype of an individual. Such a genotype must be

translated in order to obtain observable traits (the phenotype). This translation corresponds

to running an MSE projection with the parameters of the control rule, and summary statistics

could then characterise its phenotype.

Figure 7.1 illustrates the principles of a genetic algorithm. The initial population (the first

generation) in the genetic algorithm consists of many individuals, each with a different set of

parameters. This population would include the default parameterisation of the rule, as well as

randomly chosen parameterisations. For the population to evolve, the fitness of each individual

must be evaluated with a fitness function, e.g. by comparing summary statistics for predefined

targets or thresholds. Prior to creating the second generation, natural selection is applied to the

initial generation, and only the fittest individuals survive and form a reproductive population.

This reproductive population is the basis for the next generation and their genes (control rule

parameters) are passed on to the next generation; however, natural variability is introduced

through two genetic operators: crossover and mutation. The individuals in the new generation

are generated by combining the parameters of two parent-individuals (crossover), as well as

introducing random changes to the parameters (mutation). Furthermore, an elitist strategy

allows the survival of some of the individuals with the highest fitness values. Elitism is useful

to ensure that the best performing parameterisations do not disappear, and that there is no
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deterioration in the performance over the generations. This process is then repeated for every

subsequent generation until convergence criteria are reached, and the optimisation terminates.

In the present study, the application of the genetic algorithm to the optimisation problem of

the data-limited catch rule from Equation (7.1) is explored. By doing so, the aim is to improve

the performance of the generic catch rule, and, more generally, evaluate whether the approach

can be used for faster-growing (higher-k) stocks for which the default catch rule parameterisation

showed poor performance (Fischer et al., 2020, Chapter 6). Also, the results of this catch rule

are compared to both its default and optimised settings, and to the current ICES “2 over 3”

advice rule for ICES category 3 data-limited stocks.
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Figure 7.1: Conceptual representation of the genetic algorithm as an optimisation procedure for
a management procedure.
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7.4 Methods

7.4.1 Operating models

The 29 stocks defined in Chapter 5 (see Table 5.1) were used for the operating models and these

covered a wide range of life-history traits. Age-structured operating models were created using

the FLR (Kell et al., 2007) package FLife and were conditioned using life-history parameters.

Most biological parameters (e.g. natural mortality) were linked to individual growth using life-

history relations (e.g. Gislason et al., 2010). Full details of the operating model generation,

assumptions, and structure are described in Chapter 5.

Two fishing histories were created starting from an unfished state for a period of 100 years

(y = −99, ..., 0, enough for slower-growing stocks to respond to changes in exploitation) and

with 500 simulation replicates (Figure 7.2). The approach of using alternative fishing histories
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Figure 7.2: Comparison of the two fishing histories in the operating models, shown here for
pollack. The black curves represent the 500 simulation replicates and the dashed horizontal
lines indicate FMSY and BMSY.

was chosen to cover different possible exploitation patterns, including a pattern of overexploit-

ation against which the default rfb rule was already tested, and as a way to compare the catch

rule performance depending on the exploitation history. The baseline was the “one-way” fishing

history from Chapter 6, in which stocks were fished for 75 years at 0.5FMSY, and then the fishing

mortality was increased exponentially to 0.8Fcrash over the following 25 years, where Fcrash is

defined as the lowest fishing mortality that causes the stock to collapse in equilibrium. This

fishing history meant that the stocks were highly depleted and declining at the end of the fishing

history. An alternative fishing history (“random”) was generated with random fishing traject-

ories. This was achieved by defining the fishing mortality at three points in time; starting from
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an unfished state (Fy=−99 = 0), setting fishing mortality after 50 and 100 years by drawing from

independent uniform distributions [Fy=−50 ∼ U(0, Fcrash) and Fy=0 ∼ U(0, Fcrash)], and using a

simulation replicate-specific linear interpolation for the intermediate years. This random fishing

history covered a wide range of fishing patterns, including increasing, stable, and decreasing

fishing mortality, and combinations thereof (see Figure 7.2).

7.4.2 Management procedure

After the 100-year fishing history, a management procedure based on a modified version of the

rfb rule defined in Equation (7.1) was implemented for 50 years (years 1 to 50). In order to

make the rule more flexible, additional elements were introduced:

Ay+1 = Cy−1 rer fef beb x. (7.2)

The newly introduced exponents er, ef , and eb allowed the weighting of the three components

r (biomass trend), f (exploitation proxy), and b (biomass safeguard). The multiplier x worked

by modifying the advised catch, e.g. by increasing the catch (less precaution) or decreasing

it (more precaution). The components of the rfb rule are multiplicative; consequently, the

multiplier can be considered as working on the total catch advice or any individual component

(e.g. by changing the target of the f -component). Setting er = ef = eb = 1 corresponds to

the default rfb rule parameterisation without weighting, ej < 1 reduces the influence of any

component j (r, f or b) and makes it less reactive to the underlying data, with ej = 0 removing

it altogether, and ej > 1 giving component j more weight by making it more reactive.

The inclusion of additional parameters such as the exponents was not considered in the

previous Chapter 6 because the tuning of the rfb rule in Chapter 6 was conducted manually.

Including many tuning parameters in manual tuning, e.g. with a factorial design, would have

led to an unmanageable number of parameter combinations. In the present chapter, the tuning

was conducted semi-automatically with a genetic algorithm, which allowed considering a much

larger parameter space.

The r component reflects the trend in a biomass index time series and defaults to the average

of the last two years’ values divided by the average of the three preceding years’ values, which

corresponds to the current implementation of the “2 over 3” rule within ICES (ICES, 2012b).

Component r was adapted so that it corresponded to an average of n1 years divided by n2 years
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of the biomass index (I) and the most recent year was defined as an offset n0 to the intermediate

(assessment) year y:

r =
∑︁y−n0

i=y−n0−n1+1(Ii/n1)∑︁y−n0−n1
i=y−n0−n1−n2+1(Ii/n2)

(7.3)

Components f and b were kept unchanged:

f = L̄y−1
LF =M

, (7.4)

where L̄y−1 is the mean catch length above the length of first capture and LF =M a theoretical

MSY reference length assuming M/k = 1.5 and F = M based on Beverton and Holt (1957) and

proposed by Jardim et al. (2015); and

b = min
{︄

1,
Iy−n0

Itrigger

}︄
, (7.5)

with Itrigger = 1.4Iloss, where Iloss is the lowest observed biomass index value in the histor-

ical fishing period. This relationship is an analogy to the rationale for ICES data-rich stocks,

where, in the absence of better knowledge, a trigger biomass level (used as the breakpoint of a

hockey-stick harvest control rule) can be set relative to a biomass limit reference point, which

corresponds to the lowest observed biomass (ICES, 2017b, 2017f).

The final parameter of this flexible rfb rule was the frequency of advice (v), which defines the

number of years the catch advice is kept constant before applying the rule again. The default

was v = 2 years, i.e. biennial advice as is standard for category 3 data-limited stocks within

ICES (ICES, 2012b, 2018a).

Errors were assumed to be log-normal, and observation uncertainty was applied on top of

the age-aggregated biomass and length indices with SD = 0.2. Variability was implemented

for recruitment, assuming a Beverton-Holt stock-recruitment model with σR = 0.6, a typical

value within the range of values considered in other studies (e.g. Carruthers et al., 2014). The

generation of the operating models and the formulation and quantification of uncertainty were

explored in detail previously, and considered appropriate (see Chapter 5 and Appendix B).

Recruitment variability and random observation errors were compiled prior to running the MSE

and were identical for all stocks and runs; therefore, the results of a projection with a specific

catch rule parameterisation were fully reproducible and comparable.
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7.4.3 Summary statistics

Five summary statistics were selected to evaluate the performance of the rfb rule, which were

computed over the entire 50-year projection period and all 500 simulation replicates. These

were the medians of SSB/BMSY, F/FMSY, Catch/MSY and ICV (inter-annual catch variability,

defined as |(Cy − Cy−v)/Cy−v|, where Cy is the catch for the year y and v the frequency of

advice, e.g. v = 2 for a biennial advice) and the Blim risk (defined as the number of times SSB

is below Blim over all years and replicates, expressed as a proportion, with Blim defined as the

SSB where recruitment is impaired by 30%; see Fischer et al. (2020, Chapter 6) for detailed

descriptions of these metrics).

7.4.4 Optimisation procedure

The rfb rule was optimised by altering parameters of the rfb rule with a genetic algorithm as an

optimisation procedure towards meeting management objectives defined with a fitness function

(described below). The eight parameters of the rfb rule (n0, n1, n2, er, ef , eb, v, x) described

above were included in the optimisation procedure, and a specific set of these eight parameters

was seen as one individual in one generation of the algorithm. The population size was set to 100,

i.e. in every generation, 100 parameter sets were simulated. The first generation contained rfb

rule parameter suggestions, which included (i) the default rfb rule, (ii) the default rfb rule with

an annual catch advice (i.e. v = 1), (iii) using the most recent data without lags (i.e. n0 = 0),

(iv) constant catch, and (v) combinations where one or more of the rfb rule components were

turned off (i.e. ej = 0 for one or more components, j), and comprised a total of 35 suggestions

(see Table C.1 in Appendix C). The remaining 65 individuals of the first generation were created

randomly.

The simulation for each individual included running a full-feedback MSE projection over the

50-year projection period and 500 replicates. Subsequently, the fitness of the 100 individuals was

evaluated against a predefined fitness function. The fitness function, ϕ, summarises the output

of one MSE projection and assigns a numerical value to its fitness. The summary statistics

defined above were used as the basis for the fitness function definition. The rfb rule investigated

here is designed to provide management in compliance with MSY. Therefore, the deviation of

SSB, F , and catch from their MSY reference point can be used:
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ϕSSB = −
⃓⃓⃓⃓ SSB
BMSY

− 1
⃓⃓⃓⃓
, (7.6)

ϕF = −
⃓⃓⃓⃓

F

FMSY
− 1

⃓⃓⃓⃓
and (7.7)

ϕCatch = −
⃓⃓⃓⃓Catch

MSY − 1
⃓⃓⃓⃓
. (7.8)

Absolute values are used here because both an under and overshooting of the MSY reference

points is considered unfavourable. The remaining two summary statistics can be used similarly

because both risk and ICV should be reduced:

ϕrisk = − PBlim , and (7.9)

ϕICV = − ICV. (7.10)

SSB/BMSY, F/FMSY, Catch/MSY, and ICV in Equations (7.6), (7.7), (7.8), and (7.10) are, as

defined above, the medians over the 50 years and 500 replicates per simulation, i.e. one value

per simulation. Blim risk PBlim in Equation (7.9) is a single value per simulation.

The genetic algorithm worked by evaluating the fitness function, and the optimisation pro-

cedure progressed by maximising the value of this fitness function. In this case, the summary

statistics used in the fitness function indicated better performance when their absolute values

were smaller, i.e. a smaller deviation from their target. To account for this, their absolute values

were made negative so that the maximisation deployed in the optimisation procedure aimed at

increasing values for the fitness evaluations.

The final fitness function could then be any one of the Equations (7.6-7.10) or the sum of an

arbitrary combination thereof. Several fitness functions were explored, and the default fitness

function used was:

ϕSSB+Catch+risk+ICV = ϕSSB + ϕCatch + ϕrisk + ϕICV. (7.11)

In this fitness function, ϕSSB penalises deviations up and down from BMSY equally but

overshooting of BMSY might be considered less unfavourable than undershooting it. However,
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Blim risk risk increases with lower SSB, and therefore, ϕrisk penalises lower SSB. Furthermore,

both overshooting and undershooting BMSY will likely reduce catch below MSY because the

stock becomes less productive, which is then picked up by ϕCatch.

After running the 100 MSE projections (each one corresponding to an individual) in one gen-

eration of the genetic algorithm and calculating the fitness of each individual, natural selection

was applied to generate the reproductive population (Figure 7.1). The probability of selecting

an individual was proportional to its fitness. In the creation of the next generation, natural

variability was applied to the parameters. Individuals were randomly grouped into reproduct-

ive pairs. In these pairs, crossover occurred with a probability of p = 0.8 and meant that an

offspring individual with eight parameters was generated as a combination of the parameters

of two parent individuals. Mutation introduced random changes to the parameters by drawing

from a uniform distribution and had a probability of p = 0.1. Elitism was set to 5%, i.e. within

each generation, the individuals were ranked by fitness and the top 5% were passed into the next

generation without changes. This process was repeated over many generations. A termination

occurred if either (i) a maximum of 100 generations was reached or (ii) due to stationarity if

no improvement in the fitness was observed within 10 consecutive generations. The genetic

algorithm was run with the R package GA (Scrucca, 2013).

7.4.5 Current ICES management

The generic advice rule for category 3 data-limited stocks, as currently applied by ICES (2012b,

2019a), was simulated. This served as a benchmark against which the new rfb rule (and its

optimised parameterisations) could be compared, and also offered insights into the performance

of the current rule. The catch advice is biennial and based on the “2 over 3” rule (ICES, 2012b),

which is essentially Equation (7.2) where Cy−1 is set to the previously advised catch Ay−1, r is

the default of Equation (7.3) with n0 = 1, n1 = 2, and n2 = 3, the weights are set as follows:

er = 1, ef = 0, eb = 0, the multiplier set to x = 1, and a precautionary buffer (bPA) is introduced,

i.e.

Ay+1 = Ay−1

∑︁y−1
i=y−2(Ii/2)∑︁y−3
i=y−5(Ii/3)

bPA. (7.12)

In addition to that, an uncertainty cap limits the change in the catch advice to no more than

20%. The precautionary buffer reduces the catch advice if the stock is estimated to be in an

unfavourable condition based on a comparison with proxy reference points estimated, e.g. by
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the surplus production model in continuous time (SPiCT; Pedersen & Berg, 2017) or length-

based analyses. In the current ICES system, if such an assessment exists, the results are either

used solely for informing on the stock status, or the “2 over 3” rule is applied on the biomass

estimates from this assessment. Stock status is evaluated as positive if both F ≤ FMSY and

SSB ≥ 0.5BMSY, and negative if either or both conditions are not met (ICES, 2019a). If the

status is negative, the catch advice is reduced by 20%; however, once the buffer is applied, it can

only be considered again three years later. This parameterisation of the precautionary buffer is

based on an MSE evaluation conducted by ICES (2017d) in which various sizes and intervals for

the application of the precautionary buffer were tested depending on the stock status evaluated

by the SPiCT assessments. This evaluation was conducted for 12 fish stocks and three initial

exploitation levels (0.5FMSY, FMSY, 2FMSY), and a total of 36 million SPiCT assessments were

run.

In the present study, the stock status evaluation was approximated based on the pooled

sensitivity of these SPiCT assessments run by ICES (2017d). This yielded a true positive rate of

0.99 (detection of a positive stock status, as defined above, by the model when the true state in

the operating model was positive) and a true negative rate of 0.42 (detection of a negative stock

status by the model when the true state in the operating model was negative). The stock status

approximation was implemented here by extracting the stock status from the operating model

and adding uncertainty to this evaluation by drawing from a binomial distribution B(1, p),

where p is the success rate (0.99 for positive and 0.42 for negative stock status), independently

for each simulation replicate and year. This approach was a simple approximation appropriate

for the analyses here; however, it has the caveat that the identification of correct stock status

by SPiCT was assumed to be a random process defined by the success rate, irrespective of

other possible factors influencing performance. More complex model approximations could be

considered in future analyses.

7.4.6 Scenarios

The scenarios explored were:

1. Fitness function explorations. Pollack (pol, Pollachius pollachius) was chosen as a

typical example stock (k = 0.19 year−1, a medium value within the range for which the rfb

rule performed reasonably; Fischer et al., 2020, Chapter 6) to test the influence of different

formulations of the fitness function and fishing histories.
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2. Catch advice interval. The impact of the interval for which the catch advice is set was

explored for the example pollack stock.

3. Stock-specific optimisation. The genetic algorithm was applied independently to all

29 stocks using the fitness function formulation selected in the first step in order to test

the approach for different life histories.

4. Stock groups. The stocks were split into three groups using their von Bertalanffy k value

(low: 0.08 ≤ k ≤ 0.19; medium: 0.20 ≤ k ≤ 0.32; high: 0.32 ≤ k ≤ 1; unit for k: year−1),

based on the results of ICES (2018c) and Fischer et al. (2020, Chapter 6). Here, the stocks

within a group were combined, and identical catch rule parameters applied and projected

forward simultaneously. The fitness function was defined as the sum of the fitness values

per stock. This scenario was used to explore the behaviour of the optimisation procedure

when applied to a group of life histories, e.g. fast-growing compared to long-lived species,

and to test whether a generic catch rule parameterisation could be applied. [Note: there

was an overlap at k = 0.32 year−1 between the medium and high groups because turbot

(tur, Scophthalmus maximus) belonged to the group for which the rfb rule worked, whereas

it did not work for tub gurnard (gut, Chelidonichthys lucerna).]

5. Current ICES rule. The performance of the rfb rule and its optimised parameterisations

were compared to the ICES “2 over 3” advice rule for category 3 data-limited stocks as a

direct comparison of the new rule with the currently applied advice rule.

7.4.7 Data and software

The MSE framework was based on the Fisheries Library in R (FLR; Kell et al., 2007) software

suite and several of its R packages. The MSE framework was based on FLR’s mse package, as

adapted for data-limited situations in the previous chapter. The MSE modules were based on

the methods developed for the previous chapter but adapted to allow more flexible control rules,

and streamlined for high-performance computing. The results of this study are fully reproducible

and input data, software code, and summarised results as presented in this chapter were made

open source and are available from GitHub at https://git.io/JkllU.
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7.5 Results

7.5.1 Fitness function explorations

For the fitness function explorations with pollack, the genetic algorithm terminated after 16 to 27

generations (well before the 100-generation cut-off), depending on the fitness function definition

and fishing history. The optimised rfb rule parameters depended on the specific fitness function

(Table 7.1). For five of the six runs, the “2 over 3” ratio of the biomass index was kept, whereas

the offset between the last biomass index year and the intermediate year was always removed

(n0 = 0). In general, the weighting of component r of the rfb rule did not change substantially;

however, components f and b were down-weighted, and the advice interval v and the multiplier

x remained at or around their default values.

Table 7.1: Default and optimised catch rule parameters of the rfb rule. Shown are the results
for the fitness function explorations with the pollack stock, the stock-specific optimisation for
all 29 stocks, and the optimisation where stocks are split into three groups based on k. See
Equations (7.2) and (7.3) for definitions of the parameters.

operating model genetic algorithm catch rule parameters

fishing
history stock k [year−1] fitness function ϕ

gener-
ations

fitness
improve-
ment[%]

n0 n1 n2 er ef eb v x

default parameters
one-way 1 2 3 1 1 1 2 1
random 1 2 3 1 1 1 2 1

fitness function explorations
one-way pol 0.19 ϕSSB 27 100 0 2 3 1.2 0.7 0.8 3 1.06
one-way pol 0.19 ϕCatch 19 100 0 2 3 1.0 0.4 0.4 2 1.00
one-way pol 0.19 ϕSSB+risk+ICV 16 48 0 2 3 1.0 0.5 0.5 2 1.03
one-way pol 0.19 ϕSSB+Catch+risk+ICV 18 64 0 2 3 0.9 0.4 0.5 2 1.03
one-way pol 0.19 ϕSSB+F+Catch+risk+ICV 26 72 0 2 2 1.1 0.4 0.3 2 1.01
random pol 0.19 ϕSSB+Catch+risk+ICV 26 57 0 2 3 0.7 0.3 0.4 2 1.02

stock specific optimisation
one-way ang3 0.08 ϕSSB+Catch+risk+ICV 25 70 0 3 3 1.3 0.4 0.7 3 1.06
one-way rjc2 0.09 ϕSSB+Catch+risk+ICV 23 66 0 3 4 1.2 0.7 0.6 3 1.02
one-way smn 0.11 ϕSSB+Catch+risk+ICV 21 71 0 2 3 0.8 0.2 0.3 2 1.02
one-way wlf 0.11 ϕSSB+Catch+risk+ICV 23 83 0 2 3 1.0 0.5 0.3 2 1.07
one-way meg 0.12 ϕSSB+Catch+risk+ICV 24 89 0 2 3 1.0 0.4 0.7 2 1.24
one-way lin 0.14 ϕSSB+Catch+risk+ICV 23 60 0 3 3 1.2 0.6 0.5 3 1.01
one-way rjc 0.14 ϕSSB+Catch+risk+ICV 35 60 0 2 3 1.1 0.6 0.4 2 1.00
one-way syc 0.15 ϕSSB+Catch+risk+ICV 34 65 0 3 3 0.9 0.3 0.3 2 1.01
one-way sdv 0.15 ϕSSB+Catch+risk+ICV 14 62 1 2 3 1.0 0.1 0.1 2 0.98
one-way ang 0.18 ϕSSB+Catch+risk+ICV 19 57 0 2 3 0.9 0.3 0.3 2 0.99
one-way ang2 0.18 ϕSSB+Catch+risk+ICV 24 57 0 2 3 0.9 0.5 0.6 2 1.02
one-way pol 0.19 ϕSSB+Catch+risk+ICV 18 64 0 2 3 0.9 0.4 0.5 2 1.03
one-way had 0.20 ϕSSB+Catch+risk+ICV 35 77 0 2 3 0.9 0.3 0.8 2 1.08
one-way nep 0.20 ϕSSB+Catch+risk+ICV 11 76 1 2 3 1.0 0.0 0.3 1 1.00
one-way mut 0.21 ϕSSB+Catch+risk+ICV 20 75 0 2 3 0.8 0.4 0.6 2 1.10
one-way sbb 0.22 ϕSSB+Catch+risk+ICV 21 59 0 2 2 0.9 0.5 0.7 2 1.06
one-way ple 0.23 ϕSSB+Catch+risk+ICV 28 75 0 2 2 0.9 0.4 0.4 2 1.07
one-way syc2 0.23 ϕSSB+Catch+risk+ICV 30 68 1 2 3 1.0 0.2 0.2 2 1.01
one-way arg 0.23 ϕSSB+Catch+risk+ICV 14 64 0 2 3 0.9 0.2 0.2 2 1.00
one-way tur 0.32 ϕSSB+Catch+risk+ICV 32 75 0 2 2 0.9 0.4 0.4 2 1.09
one-way gut 0.32 ϕSSB+Catch+risk+ICV 22 51 0 2 2 0.8 0.3 0.6 2 1.02
one-way whg 0.38 ϕSSB+Catch+risk+ICV 27 58 0 2 3 0.6 0.6 0.7 2 1.00
one-way bll 0.38 ϕSSB+Catch+risk+ICV 28 52 0 2 3 0.7 0.4 0.9 3 1.00
one-way lem 0.42 ϕSSB+Catch+risk+ICV 28 50 0 3 3 0.6 0.3 0.8 3 1.03
one-way ane 0.44 ϕSSB+Catch+risk+ICV 14 42 0 2 3 0.8 0.8 0.7 2 1.01
one-way jnd 0.47 ϕSSB+Catch+risk+ICV 25 55 0 3 3 0.3 0.4 1.4 3 0.94
one-way sar 0.60 ϕSSB+Catch+risk+ICV 25 48 0 2 3 0.6 0.8 1.3 3 0.96
one-way her 0.61 ϕSSB+Catch+risk+ICV 24 51 0 2 3 0.4 0.5 1.1 2 0.96
one-way san 1.00 ϕSSB+Catch+risk+ICV 25 45 0 2 2 0.3 0.5 1.1 2 1.00

stock groups optimisation
one-way low-k 0.08-0.19 ϕSSB+Catch+risk+ICV 15 68 1 2 3 1.0 0.0 0.2 2 1.00
one-way medium-k 0.20-0.32 ϕSSB+Catch+risk+ICV 19 67 0 2 3 0.8 0.2 0.8 2 1.07
one-way high-k 0.32-1.00 ϕSSB+Catch+risk+ICV 34 28 0 3 3 0.6 0.4 1.0 3 1.00

In the one-way fishing history, the median of the SSB increased after the implementation of

the default rfb rule from its depleted state, but overshot BMSY, peaked at just below 2BMSY, and
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then equilibrated at around 1.5BMSY at the end of the 50-year projection period (Figure 7.3a).

All tested fitness functions resulted in median SSB trajectories without the initial SSB peak and

terminated closer to BMSY. Despite exhibiting similar SSB trajectories, trade-offs between the

summary statistics were evident (Figure 7.3c). The fitness functions with only a single compon-

ent (ϕCatch, ϕSSB) led to parameter combinations which resulted in values of the corresponding

summary statistic being close to their targets; however, the remaining summary statistics did

not always improve for ϕSSB (although it did for ϕCatch). Adding additional components to the

fitness function alleviated this and improved the respective summary statistics.

The progress of the optimisation process with a genetic algorithm is visualised in Figure 7.3b

for the one-way fishing history with the fitness function including SSB, catch, risk, and ICV. The

best fitness values in each generation (with a population size of 100) converged quickly, and the

algorithm terminated after 18 generations due to stationarity, because no further improvement

within 10 consecutive generations was made.

For the alternative historical fishing history (random), only the ϕSSB+Catch+risk+ICV fitness

function was explored, and improved the performance of the rfb rule, as seen for the stock

trajectories and all summary statistics (Figure 7.3a and c). The SSB, F , and catch moved closer

to the MSY reference points and reached this state earlier, and risk and ICV were reduced. This

fitness formulation (ϕSSB+Catch+risk+ICV) was selected for further analysis because it offered a

balance between achieving MSY (for both SSB and catch), reducing risk and minimising inter-

annual variations in the catch. Ideally, a decision on which components to include in the fitness

formulation would be closely aligned to management objectives.

7.5.2 Catch advice interval

The impact of the frequency of setting the catch advice was explored for pollack in the one-

way fishing history by fixing the interval and then optimising the rfb rule for the remaining

parameters with the genetic algorithm and using ϕSSB+Catch+risk+ICV. The maximum fitness

was obtained with a biennial catch advice. When setting an annual or triennial catch advice,

the fitness deteriorated by 20 and 12% respectively when compared to biennial catch advice

(results not shown).
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Figure 7.3: Results of the exploration of fitness functions for pollack. (a) shows the trajectories
of the default rfb rule (labelled “not optimised”, including confidence intervals) and median
trajectories for the optimised rfb rule of several fitness functions. Shown are the historical
fishing period (“history”) and the subsequent application of the rfb rule (“projection”), for the
“one-way” and the “random” fishing history. (b) visualises the progress of the search procedure
of the genetic algorithm for the ϕSSB+Catch+risk+ICV fitness function. The shaded area indicates
the total range of observed fitness values. (c) displays the summary statistics for the default
rfb rule parameterisation in comparison with the optimised solutions, both for the one-way and
random fishing history. The height of the bars indicates the deviation (up or down) from the
target of the optimisation (MSY reference points for SSB, F , and catch; 0 for Blim risk and
ICV). No fitness value is shown for the non-optimised rule.
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7.5.3 Stock specific optimisation

The stock-specific optimisation of the rfb rule led to stock-specific catch rule parameters and

substantially improved the fitness of the rule for all stocks (Table 7.1). The components of

the fitness function are summarised in Figure 7.4a. For the low- to medium-k stocks (k ≤
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Figure 7.4: Summary statistics for all 29 stocks of the MSE, for the default and optimised
rfb rule parameterisation, and the one-way fishing history. The fitness function corresponds to
“SSB+Catch+risk+ICV” in Figure 7.3. The stocks are sorted by the von Bertalanffy growth
parameter k in ascending order from left to right. (a) shows the results of stock-specific op-
timisations in which the genetic algorithm was run independently for all stocks and in (b) the
optimisation was conducted for three stock groups based on k. For the groups in (b), only one
fitness value exists per group, which is the sum of the values for the stocks in the group. The
stock abbreviations are defined in Table 5.1 in Chapter 5.

0.32 year−1), SSB, F and catch summary statistics were moved close to their MSY reference

points. This meant a reduction in SSB for many stocks compared to the default rfb rule, which

is reflected in a slight increase in risk and decrease in catch variability. For most high-k stocks

(k ≥ 0.32 year−1), some improvement of the performance was achieved; however, the catch was

still low and fitness value improvements were less pronounced than for stocks with lower k.
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7.5.4 Stock groups

The optimisation for the stock groups based on k (low, 0.08 ≤ k ≤ 0.19; medium, 0.20 ≤ k ≤

0.32; high, 0.32 ≤ k ≤ 1; unit for k: year−1) was able to improve the performance of the rfb

rule compared to its default parameterisation (Table 7.1, Figure 7.4b). When the fitness values

from the stock-specific optimisation are summed up by stock group and compared to the fitness

of the stock group optimisation, then the total improvement was always better for the stock-

specific optimisation. The overall improvement for the low and medium-k groups was close to

the stock-specific optimisation. For the high-k group, the improvement was less pronounced and

the rfb rule showed poor performance.

7.5.5 Current ICES rule

The current ICES “2 over 3” advice rule for category 3 stocks (with uncertainty cap and pre-

cautionary buffer) was compared to the rfb rule (Figure 7.5). The performance of the “2 over 3”
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Figure 7.5: Comparison of the summary statistics of the current ICES management procedure
and the default and optimised rfb rule for two fishing histories. The fitness function corresponds
to “SSB+Catch+risk+ICV” in Figure 7.3. The stocks are sorted by the von Bertalanffy growth
parameter k in ascending order from left to right.
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rule was dependent on the stock and fishing history. At first glance, the performance of the “2

over 3” rule appeared better compared to the default rfb rule when considering fitness, except

for some high-k stocks. However, the optimised rfb rule consistently performed better than both

of them throughout. In the one-way fishing history, the “2 over 3” rule resulted in SSB values

at or below BMSY, with low SSBs for some medium k stocks, and generally high Blim risks.

The performance of the default rfb rule by stock was similar for SSB, F , catch, and ICV

when comparing fishing histories (one-way vs. random). In contrast, the performance of the “2

over 3” rule was highly influenced by the fishing history prior to its implementation, with low

SSB values for some of the medium-k stocks, and generally high levels of Blim risk under the

one-way fishing history.

For better comparability, the uncertainty cap of the “2 over 3” rule (limiting catch advice

variability to no more than 20%) was added to the default parameterisation of the rfb rule (see

Figure C.1 in Appendix C). For most stocks, this moved the performance of the rfb rule closer to

the “2 over 3” rule. Some stocks exhibited an increased Blim risk, whereas the risk was reduced

for others.

7.6 Discussion

The main aim of this study was to explore the application of a genetic algorithm to the optim-

isation of the performance of a data-limited catch rule (the rfb rule), first tested in the previous

chapter. The results presented provide evidence that the rfb rule’s performance can be substan-

tially improved. The improvement was dependent on the simulated stock (i.e. defined by life

history), generally better for species with slow to medium individual growth than those with

faster individual growth, and dependent on which management objectives were included in the

fitness function.

The optimisation of the rfb rule was performed for 29 stocks, which were generated based

on life-history parameters and relationships to develop age-structured operating models, and

provides a theoretical basis for developing hypotheses about population dynamics. The reason

for this approach was that these stocks are considered data-limited, and therefore analytical

stock assessments do not exist. Extensive sensitivity analyses have been conducted previously

(see Chapter 5, Chapter 6, and Appendix B) on the assumptions and parameterisations of

the operating models such as steepness, recruitment variability, and observation uncertainty.
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Even though the operating models are based on real stock units, they might not necessarily

exactly represent the stocks (e.g. fishing histories were simulated to represent certain conditions);

nevertheless, they cover a wide range of life histories. The purpose of this study was, therefore,

only to a lesser extent to provide stock-specific tuning parameters for the rfb rule. If stock-

specific tuning of the rule is required, it is recommended that additional data be gathered to

fine-tune the operating models and apply the optimisation procedure set out here.

For most stocks, the optimised rfb rule parameterisation included a biennial catch advice

interval. Therefore, not unexpectedly, when this interval was fixed to a different value in the

optimisation procedure for pollack, the performance of the rule deteriorated. This result is an

indication that updating the advice more frequently does not necessarily result in better man-

agement, particularly when ICV is considered an important component of the fitness function.

ICES usually provides biennial catch advice for category 3 data-limited stocks, which reduces

the operational effort for conducting stock assessments for the many data-limited stocks com-

pared to an annual cycle. Nevertheless, for most stocks, the usual 1-year time lag for the survey

data was removed in the optimised rfb rule parameterisation. Essentially, this means that data

up to the intermediate year are used to provide the catch advice for the following advice year.

This situation is feasible in an ICES setting where, for many stocks, scientific catch recommend-

ations for the advice year are released in the middle of the intermediate year. Consequently,

survey data from the beginning of the intermediate year are available and can be included in

the analyses. In the present simulations, surveys were timed to occur at the start of the year.

Previous work on the rfb rule (see Chapter 6, and Fischer et al., 2020) revealed that the

rule performs poorly for stocks with higher von Bertalanffy growth parameter k values (k ≥

0.32 year−1). Despite making the rfb rule much more flexible by allowing the reduction of the

time lag and introducing weighting of the catch rule components, the rule still did not perform

markedly better for these stocks, and caused low yields and a high risk of dropping below biomass

reference points. For the remaining low- to medium-k stocks (k ≤ 0.32 year−1), the performance

improvements through the genetic algorithm were substantial, both for stock-specific as well as

the broader k-group optimisation. Therefore, it appears that, for higher-k stocks, the rfb rule

cannot provide reliable management options which are compliant with precautionary and MSY

principles, and alternatives need to be found.

Higher-k stocks are inherently more dynamic, i.e. exhibit more inter-annual variability and

have high population growth rates. Therefore, they respond more quickly to changes in fishing
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behaviour, environmental forcing, and errors in the feedback control rule. Alternative manage-

ment procedures, such as simple constant harvest rate-based rules using an index of relative

abundance (e.g. an acoustic survey), might provide better management without the need to

enforce MSY reference levels. In addition, the f -component of the rfb rule based on mean catch

length and an FMSY proxy may not be optimal for these species, and alternative length-based

indicators that track incoming year-classes and identify future abundance may potentially per-

form better. Lessons can also be learned from the management of fisheries targeting fast-growing

and pelagic stocks in other parts of the world, such as for Pacific sardine (PFMC, 2019) or the

South African pelagic fishery (Cochrane et al., 1998; De Oliveira & Butterworth, 2004).

The first step in addressing the optimisation of procedures for managing marine living re-

sources, like any other optimisation problem, requires the specification of management object-

ives. Different stakeholders may have vastly different preferences for utility functions (Fishburn

& Kochenberger, 1979), and fisheries management, like many other real-world problems, must

consider multiple objectives due to the potentially conflicting interests of different asset and

stakeholder groups (Rindorf et al., 2017), e.g. fishers, policymakers, environmentalists, whole-

salers, retailers, consumers, and scientists. In an ideal set-up of an MSE exercise, all stakeholders

are involved from the beginning and have their say in the selection of management objectives as

well as inevitable trade-offs. In reality, it can be challenging to receive any interaction from stake-

holders; for example, even though methods workshops in ICES are open to the public, feedback

about management objectives sometimes has to be explicitly requested, or such management

objectives assumed by analysts (ICES, 2020b).

Alternative tuning algorithms to the optimisation deployed here exist (e.g. Givens et al.,

1999). Optimisation towards achieving some minimum performance (e.g. conservation consid-

erations) is possible but is likely to reduce the overall performance by forfeiting yield. The

implications of including specific risk thresholds are a subject of future work.

Several fitness functions were explored and resulted in different catch rule parameters and

performance metrics. When only a single component, e.g. SSB, was included, the SSB metric

reached levels very close to its optimum (BMSY); however, other important metrics such as Blim

risk and ICV were neglected. The fitness function selected here can be considered partially ar-

bitrary, although based on careful consideration; it appears to balance the objective of achieving

MSY (for both SSB and catch) while reducing risk and minimising inter-annual catch variability.

The weighting of the fitness function elements can be a point of discussion, and specific stake-
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holders might favour alternative parameterisations. Furthermore, equal weighting was applied

to the deviation of performance metrics from their MSY level (up or down). In terms of SSB,

dropping below BMSY should be reduced when considering conservation, whereas the opposite is

less critical. Nevertheless, the fitness function included Blim risk, and therefore, low stock levels

triggered a different response in the optimisation.

Any improvement can only be as good as the definition of the fitness function, and the

optimisation is purely based on evaluating this fitness function, ignoring any other feature.

Therefore, fitness functions must be carefully designed, and it should be recognised that there

might not be a single fitness function covering all aspects. The type of fitness function used in

this study could be tailored for stock-specific case studies, as it included all metrics important

for the objective of a specific management system to account for trade-offs. The development

of case-specific control rules is an improvement over the current approach of one rule for all.

Another important concept that could be explored is the monetisation of the outcome of

applying a specific management procedure, e.g. by quantifying the monetary value of exploiting

a fish stock with the price of premiums for an insurance against economic risks of the fishery

(Mumford et al., 2009). Such an evaluation would allow the comparison of the application of

new catch rules compared to traditional management rules, or even the benefit of optimising

management procedures, and should be considered in future studies.

The types of simulations, as run here with the genetic algorithm included in a full-feedback

MSE framework, are highly computationally demanding. The simulations, in particular for the

runs combining several stocks, had central processing unit (CPU) runtimes of up to several

thousand hours. Therefore, it is implausible to attempt to run these simulations on personal

computers, and instead a high-performance computing (HPC) cluster with massive parallel-

isation techniques was utilised (the high-performance computing system of the Imperial Col-

lege Research Computing Service, www.doi.org/10.14469/hpc/2232). The computations were

spread simultaneously over numerous computing nodes and hundreds of CPU cores to reduce

the runtime to mere hours. Specifically, a hybrid parallelisation approach was adopted where the

individual projections of the MSE (catch rule parameterisations) were parallelised by executing

them on different computing nodes with the message passing interface (MPI; Walker, 1992), and

the MSE projections themselves were parallelised within computing nodes.

For the purpose of this study, the MSE simulations were based on FLR’s standardised MSE

framework (Jardim et al., 2017) and this was linked to a genetic algorithm optimisation approach,
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adapted for massive parallelisation. The outcomes presented here provide evidence that it is

possible to link the two and that management procedures can be improved successfully with this

approach. The FLR MSE framework has recently been gaining popularity for conducting MSEs

within the ICES community, and has, for example, been used to evaluate long-term management

plans of North Sea gadoid stocks (cod, haddock, whiting, and saithe, ICES, 2019h) based on an

EU-Norway request to ICES. This evaluation included running an MSE for data-rich stocks and

a fully analytical stock assessment (SAM, Nielsen & Berg, 2014) in the feedback loop, which

caused substantial computational complexity. In order to optimise a management procedure

(maximise yield while maintaining precautionary risk considerations), an exhaustive grid search

with manual interventions was conducted over two harvest control rule parameters (Ftarget and

Btrigger). With a framework which includes machine intelligence for the optimisation, like the

one developed for the data-limited rfb rule here, the computational effort could likely be greatly

reduced, thereby reducing computational expenses and also shortening the runtime required for

obtaining results. Therefore, the optimisation procedure explored here in a data-limited context

could also be applied to data-rich situations and this is explored in Chapter 11.

The application of a genetic algorithm as an optimisation procedure piloted here was spe-

cific to an empirical management procedure considered by ICES. Nevertheless, the use of this

approach is not limited to ICES or Europe and can be applied in any management system.

The optimisation is aimed at satisfying concrete management objectives, formalised in a fitness

function. Therefore, any management objective (be it for data-rich, data-limited, or data-poor

situations) can be included, as long as it is possible to characterise the objectives mathematically.

The settings for the genetic algorithm (maximum number of generations, convergence cri-

teria, population size, mutation, and crossover probabilities, etc.) might be, at least partially,

considered arbitrary, and were a compromise between reducing computational complexity (com-

puting time, memory demand, etc.) and at the same time providing a reliable optimisation.

The optimisation process is entirely reproducible, but it is based on a stochastic process and

therefore dependent on random numbers. The set-up of the search itself can be considered an

optimisation problem (hyperparameter optimisation). Due to the nature of the optimisation

procedure, it cannot be guaranteed that the optimised solution is indeed the global optimum

of the multi-dimensional parameter space (Holland, 1992). Nonetheless, the solutions presented

here are a substantial improvement to the base case (the default catch rule parameters) and

can be quantified with the fitness values and its components. An optimisation with a genetic
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algorithm has the benefit that the progress can be observed directly, and the path leading to the

final solution can be traced back. Other machine learning methods, such as neural networks,

might also be used; however, they might be regarded as black boxes which provide results, but

it is not always possible to describe them in a way humans can understand.

Finally, the performance of the rfb rule analysed in this study was compared to the current

ICES advice rule for category 3 data-limited fish stocks (i.e. the “2 over 3” rule with an uncer-

tainty cap and a precautionary buffer; ICES, 2012b, 2019a). At first glance, the performance of

the “2 over 3” rule might appear better than the default rfb rule, particularly when considering

the random fishing history. However, the behaviour of the rule is highly influenced by the stock

and its status prior to the implementation, as shown previously (Jardim et al., 2015; ICES,

2017d; Fischer et al., 2020) and again here for the two fishing histories. The “2 over 3” rule is

aimed at maintaining a status quo and does not include any target.

7.7 Conclusion

The outcome of this chapter is a recommendation to phase out the use of the “2 over 3” rule

within ICES and the rfb rule tested in this study is proposed as an improved successor. The

reasoning in favour of the new catch rule is that (i) it includes an MSY based target in addition

to the index trend, (ii) it underwent extensive MSE testing prior to its implementation, (iii)

it yields more stable outcomes irrespective of the stock status, and (iv) its flexibility allows

case-specific optimisation. Nonetheless, the rfb rule cannot be recommended for higher-k (fast-

growing) stocks due to its poor performance, even when optimised. For such stocks, alternative

management procedures, such as constant harvest rates, need to be considered and are explored

in subsequent chapters.

The work presented in this chapter can be seen as an optimisation towards general man-

agement objectives, including MSY and some risk considerations. However, for the application

to stocks within ICES, the ICES precautionary approach requests that the risk of falling below

the limit reference points (Blim) does not exceed 5% (ICES, 2019a). The following chapter ex-

plores the feasibility of including such an explicit risk limit in an optimisation procedure and its

implications on management decisions.
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Chapter 8

Application of explicit precautionary

principles in data-limited fisheries

management1

1This chapter is an adaptation of Fischer et al. (2021b). Contains public sector information licensed under the
Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).
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8.1 Foreword

This chapter is an extension of the optimisation of the empirical management procedure (the

“rfb rule”) explored in the previous two chapters. This chapter includes considerations of explicit

risk limits in the management objectives and the use of flexible catch constraints. Preliminary

results were presented at the tenth International Council for the Exploration of the Sea (ICES)

Workshop on the Development of Quantitative Assessment Methodologies based on LIFE-history

traits, exploitation characteristics, and other relevant parameters for data-limited stocks (ICES

WKLIFE X; ICES, 2020a). Subsequently, additional analyses were undertaken, and the work

was peer-reviewed and published in Fischer et al. (2021b):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2021b). Application

of explicit precautionary principles in data-limited fisheries management. ICES Journal

of Marine Science, 78 (8), 2931–2942. https://doi.org/10.1093/icesjms/fsab169

The following sections in this chapter are an adaptation of this publication.

8.2 Abstract

Many management bodies require applying the precautionary approach when managing marine

fisheries resources to achieve sustainability and avoid exceeding limits. For data-limited stocks,

however, defining and achieving management objectives can be difficult. Management proced-

ures can be optimised towards specific management objectives with genetic algorithms. This

chapter explored the feasibility of including an objective that limited the risk of a stock falling

below various limit reference points in the optimisation routine for an empirical data-limited

control rule which uses a biomass index, mean catch length and includes constraints (the “rfb

rule”). This was tested through management strategy evaluation on several fish stocks repres-

enting various life-history traits. Risk objectives could be met, but more restrictive risk limits

can lead to a potential loss of yield. Outcomes were sensitive to simulation conditions such as

observation uncertainty, which can be highly uncertain in data-limited situations. The rfb rule

outperforms the method currently applied by ICES, particularly when risk limitation objectives

are considered. The work in this chapter concludes that the application of explicit precautionary

levels is useful to avoid overfishing. However, caution must be taken against the indiscriminate

use of arbitrary risk limits without scientific evaluation to analyse their impact on stock yields

and sustainability.
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8.3 Introduction

One of the main objectives of fisheries management is to ensure the long-term sustainability

of the resources being exploited. An imperative for the successful management of fish stocks

is the existence of clearly defined management objectives and robust ways to achieve them.

However, for many of the world’s fish stocks, there are insufficient data and knowledge to

conduct reliable quantitative stock assessments (Rosenberg et al., 2014). The limitations do

not solely impact data and knowledge of managed resources but can extend to the management

objectives themselves. Management goals for data-limited fish stocks are frequently vague and

might only be formulated to ensure precautionary exploitation without specific performance

metrics or guidelines.

Management measures for many fish stocks in the Northeast Atlantic are based upon sci-

entific recommendations from ICES. ICES applies an advice framework for data-rich stocks that

considers both maximum sustainable yield (MSY) and precautionary principles (ICES, 2019a).

Within this framework, catch advice is derived from short-term forecasts, typically with a target

fishing mortality at the level that would achieve MSY (FMSY). Precautionary considerations re-

quire that limit reference points are also defined to ensure that low stock size and unsustainable

fishing mortality are avoided with a high probability.

The precautionary approach was first introduced in ICES in the late 1990s and is based on

the principle that a fish stock should not fall below a point where recruitment or productivity

is impaired (Lassen et al., 2014). For data-rich stocks, this point is typically defined as a

spawning stock biomass (SSB) limit reference point (Blim). ICES technical guidelines state that

management must ensure that the probability of SSB falling below Blim must not exceed 5%

(ICES, 2017b, 2019a). The precautionary principle is implicitly implemented in ICES advice

by defining threshold reference points (such as Bpa) that ensure that the limit reference points

are avoided with a high probability (Hauge et al., 2007). The ICES MSY advice rule itself

(fish at FMSY unless SSB < MSY Btrigger, in which case reduce F linearly to zero by the extent

that SSB < MSY Btrigger) is designed to ensure that stocks are capable of producing MSY, but

the constraint that MSY Btrigger ≥ Bpa ensures this rule is consistent with the precautionary

principle. Alternatives to the ICES MSY advice rule are possible but need to demonstrate

that they comply with the precautionary 5% risk limit. To do this, evaluations are preferably

conducted using management strategy evaluation (MSE), and recent examples of this procedure
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are the evaluations of long-term management strategies for North Sea stocks (cod, haddock,

saithe, whiting, and herring; ICES, 2019h) or Northeast Atlantic mackerel (ICES, 2020c).

In data-limited cases, quantitative assessment models are often unavailable and knowledge

about stock development and status does not exist. Consequently, stock size or fishing mortality

cannot be judged relative to target or limit reference points, impairing risk considerations.

For such cases, ICES applies a precautionary framework aimed at ensuring sustainable catch

advice by using all available information (ICES, 2019a). Despite this overarching precautionary

principle, there are no specific definitions or guidelines about what constitutes precaution or

how this could be measured. Instead, ICES classifies fish stocks into six categories depending on

the extent of data limitations and provides a set of possible methods to derive catch advice and

evaluate stock status relative to MSY proxy reference levels, if possible (ICES, 2012b, 2018b).

Stocks for which there is no quantitative assessment, but for which an index of relative

abundance exists, are defined as category 3 stocks. For these stocks, ICES catch advice is

currently (as of 2021) derived in most cases from a simple “2 over 3” rule, which sets the catch

advice by multiplying the most recent advised catch by the average of the last two index values

divided by the average of the three preceding index values (ICES, 2012b, 2018b, 2019a). This

approach is complemented by an uncertainty cap limiting the change between advised catches to

no more than 20%. Additionally, a precautionary buffer reduces the catch advice by 20% when

the stock is judged to be in an unfavourable condition (if either biomass is thought to be below

a possible biomass limit, usually 50% of a BMSY proxy value, or fishing mortality is thought

to be above an FMSY proxy value) or unknown, but can only be applied once in a three-year

period. At best, this rule can maintain the current stock status because it lacks a target.

Since the first implementation of the 2 over 3 rule in 2012, it was only meant as an interim

solution until better options could be developed. Despite some early simulation testing (De

Oliveira et al., 2010; ICES, 2012d), it was never shown that the 2 over 3 rule provided precau-

tionary advice or was, in fact, compliant with the principles of the ICES precautionary approach.

Currently, alternative management approaches are being considered for implementation into the

ICES advice framework. The prime forum for developing and testing alternative data-limited

approaches in ICES is the WKLIFE workshop (ICES, 2012d), which has been running since

2012, with the tenth meeting in the series held in 2020 (ICES, 2020a).

Two main strains of methods for category 3 stocks are currently being considered; model-

based and model-free. The model-based strain considers control rules based on a surplus pro-
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duction model (SPiCT; Pedersen & Berg, 2017), including short-term forecasting. To account

for uncertainty and provide precautionary advice, percentiles different from 50% of model es-

timates are deployed (Mildenberger et al., 2022). However, it is common that stock assessment

models cannot be used for data-limited stocks, e.g. because of convergence issues or insufficient

data. Simpler models relying on fewer data, such as catch only methods, exist, but are only

considered for stocks with more severe data limitations (categories 4–6). The alternative is a

model-free empirical rule, and ICES considers the rfb rule for these cases. The rfb rule includes

additional elements for providing catch advice: in addition to the 2 over 3 component (r), there

is an exploitation proxy target derived from the mean length in the catch (f), and a biomass

safeguard reducing the catch advice once the stock falls below a threshold (b). New guidelines

with these rules have been drafted (Annex 3 of ICES, 2020a) and are intended to replace current

methods. Simple empirical management procedures are a viable possibility for managing fish-

eries, are easier to implement, cheaper because they rely on fewer data, and their management

performance can match more complex stock assessment frameworks (Geromont & Butterworth,

2015a, 2015b; Carruthers et al., 2016). Another benefit is that they are less susceptible to

environmental changes, such as those induced by climate change, because management follows

trends in the stock instead of chasing the expensive “best assessment” approach.

Early simulation testing of the rfb rule (Fischer et al., 2020, Chapter 6) showed that its per-

formance depended on the individual growth rate of the managed stock and the performance was

poor, with high risks of stock collapses, for fast-growing stocks (von Bertalanffy k ≥ 0.32 year−1).

For slow- to medium-growing stocks, the rfb rule performed reasonably but often led to stock

levels above BMSY and therefore forfeited yield. However, the performance could be improved

by optimising the rule towards MSY (Fischer et al., 2021a, Chapter 7).

In the previous chapter (Chapter 7), a procedure to optimise the rfb rule to meet specific

management objectives by applying a genetic algorithm (Holland, 1992) was established, and

the principle is visualised in Figure 8.1. For the optimisation, the objectives need to be defined

mathematically in the form of a fitness function. Fischer et al. (2021a, Chapter 7) deployed a

generic fitness function to achieve MSY while also reducing the risk of stocks falling below limit

biomass reference levels and catch variability. Furthermore, Fischer et al. (2021a, Chapter 7)

evaluated the performance of the 2 over 3 rule and compared it to the rfb rule. The results

showed that the 2 over 3 rule’s performance crucially depends on the stock status before its

implementation; it merely maintains that level and does not provide precautionary management
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Figure 8.1: Principle of using a genetic algorithm to optimise a management procedure in a
management strategy evaluation.

advice. In the simulations, the rfb rule outperformed the 2 over 3 rule, in particular when

optimised for a specific stock, for all simulated life histories and fishing histories (Chapter 7).

This chapter explored including explicit precautionary elements in data-limited fisheries man-

agement with the example of the empirical rfb rule. This included considerations of the definition

of risk levels and how MSE simulation conditions, such as historical fishing patterns, the length

of the simulation, or the levels of uncertainty and variability, can affect the selection of man-

agement options. Finally, an exploration of how the rfb rule can be optimised to meet specific

precautionary considerations was conducted and their trade-offs are discussed.
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8.4 Methods

8.4.1 Management strategy evaluation

The age-structured operating models developed in Chapter 6 in FLR (Kell et al., 2007), and as

parameterised in Chapter 7 (Fischer et al., 2021a), were redeployed. These comprised 29 stocks

generated from life-history parameters covering a wide range of life-history traits (see Table 5.1).

There were two distinct 100-year fishing histories; a one-way fishing history (fished at 0.5FMSY

for 75 years, then increase fishing mortality exponentially to 0.8Fcrash over 25 years, where

Fcrash is defined as the lowest fishing mortality that causes the stock to collapse in equilibrium),

and a random fishing history with arbitrary fishing mortality trajectories (Fy=−99 = 0, and

two points in time where fishing mortality is drawn from independent uniform distributions:

Fy=−50 ∼ U(0, Fcrash) and Fy=0 ∼ U(0, Fcrash), with linear interpolations in-between). These two

fishing histories offered insights into situations with a strong initial depletion (one-way) and an

alternative with a wide range of depletion (random). Errors were assumed to be log-normal, and

each stock consisted of 500 independent simulation replicates. Recruitment was simulated by a

Beverton-Holt model with steepness h = 0.75 and recruitment variability σR = 0.6. Subsequent

to the fishing history, a management procedure was implemented for 50 years. Observation

errors were implemented to the aggregated biomass index and mean catch length index with

σobs = 0.2. Full specifications of the operating models and simulation conditions are available

in Chapters 5, 6 and 7.

8.4.2 Management procedure

The management procedure was based on the rfb rule (see Chapter 6; ICES, 2017f; Fischer

et al., 2020):

Ay+1 = Cy−1 r f b, (8.1)

where the newly advised catch Ay+1 in year y + 1 is based on the previously realised catch

Cy−1, multiplied by three components corresponding to the stock trend (r) from a biomass

index, an exploitation proxy (f) derived from the mean catch length and a biomass safeguard

(b) protecting the stock when the biomass index falls below a critical threshold. Fischer et al.
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(2021a, Chapter 7) expanded the rfb rule for optimisation purposes:

Ay+1 = Cy−1

(︄ ∑︁y−n0
i=y−n0−n1+1(Ii/n1)∑︁y−n0−n1

i=y−n0−n1−n2+1(Ii/n2)

)︄er (︄
L̄y−1

LF =M

)︄ef
(︄

min
{︄

1,
Iy−n0

Itrigger

}︄)︄eb

x (8.2)

The parameters of this rule are defined in Table 8.1. Seven of the parameters in Equation (8.2)

were tuneable (n0, n1, n2, er, ef , eb, x), i.e. could be changed during the optimisation process.

Additionally, the catch advice interval v defines the number of years for which the advice is kept

constant before the rfb rule is applied again. Finally, an uncertainty cap can limit the allowed

increase (uu) and decrease (ul) in the catch advice Ay+1 relative to the previously realised catch

Cy−1. The inclusion of these additional parameters resulted in 10 tuneable parameters that

could be used in the optimisation.

Table 8.1: Parameters of the flexible rfb rule (as shown in Equation (8.2) and described in
subsequent text).

Parameter Definition Default
Generic parameters

y assessment year
A catch advice
C realised catch
I biomass index
L̄ mean catch length above the length of first capture (Lc)
LF =M theoretical proxy MSY reference length assuming F = M

and M/k = 1.5
Itrigger biomass safeguard reference value, set to 1.4 Iloss, where

Iloss is the lowest observed historical value
Tuneable parameters

n0 offset between last biomass index year and assessment year 1
n1, n2 number of biomass index years in the numerator and de-

nominator of component r
n1 = 2, n2 = 3

er, ef , eb exponents for weighting of components r, f and b 1
x multiplier, scaling the catch advice 1
v catch advice interval, number of years for which the catch

advice is kept constant
2 (biennial)

uu, ul catch constraint (upper and lower limit), restricting the
allowed change in the catch advice Ay+1 relative to the
previously realised catch Cy−1

uu = ∞, ul = 0

8.4.3 Genetic algorithm

The genetic algorithm as applied and parameterised in the previous chapter (Chapter 7; Fischer

et al., 2021a) was used to optimise the rfb rule. The population size of the algorithm was set

to 100 individuals. Each of these individuals was characterised by a specific parameterisation of
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the 10 tuneable parameters of the rfb rule described above. This projection was summarised in a

single value using a fitness function. Those individuals with the highest fitness were selected and

formed the reproductive population. The next generation was generated by including natural

variability through genetic operators (crossover with a probability of p = 0.8 and mutation with

p = 0.1) working on the 10 tuneable parameters of the rfb rule. Additionally, an elitist strategy

allowed the survival of those 5% of individuals with the highest fitness. This iterative process

was repeated for every subsequent generation until either (i) a limit of 100 generations was

reached or (ii) due to stationarity of the best fitness value in a generation for 10 consecutive

generations.

8.4.4 Precautionary considerations

The previous chapter (Chapter 7; Fischer et al., 2021a) defined a fitness function which included

four components:

ϕMSY = ϕSSB + ϕCatch + ϕrisk + ϕICV, (8.3)

where the individual components were

ϕSSB = −
⃓⃓⃓⃓ SSB
BMSY

− 1
⃓⃓⃓⃓
, (8.4)

ϕCatch = −
⃓⃓⃓⃓Catch

MSY − 1
⃓⃓⃓⃓
, (8.5)

ϕrisk = − PBlim , and (8.6)

ϕICV = − ICV. (8.7)

The summary statistics used in these fitness elements were calculated over the 50-year projection

and 500 simulation replicates. SSB/BMSY and Catch/MSY were the medians of their respective

distributions and PBlim (the Blim risk) the proportion of the SSB values falling below the biomass

limit reference point Blim (defined as the SSB corresponding to a recruitment impairment of

30%). The inter-annual catch variability (ICV) was the median of |(Cy −Cy−v)/Cy−v| (exclusive

of undefined values due to division by zero) calculated every v years, where Cy is the catch for

the year y and v the frequency of advice, e.g. v = 2 for a biennial advice. Effectively, this fitness
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function was aimed at reaching MSY reference levels for SSB and catch, while at the same time

reducing risk and ICV.

The elements of ϕMSY are unitless, can have values between 0 and 1, and are summed up to

derive the total fitness value. This design is a mathematical formulation of generic fisheries man-

agement objectives, including MSY (ϕSSB, ϕCatch), catch stability (ϕICV) and a precautionary

element reducing stock depletion (ϕrisk). However, these elements consider different elements of

the biological stock and the fishery, and a change in one element can cause trade-offs in others.

For example, an increase in the catch will cause a decrease in the SSB, and a decrease in the SSB

increases Blim risk. This means that the elements of the fitness function are not fully substi-

tutable and are a compromise of potentially conflicting management objectives, added together

without weighting. Weighting the elements of the fitness function is possible, but exploring

many different potential weightings would massively increase the computational complexity and

is beyond the scope of this chapter.

The ICES precautionary criterion generally states that the probability of SSB falling below

Blim should not exceed 5% (ICES, 2019a). Therefore, ϕMSY is not entirely aligned towards

the ICES precautionary approach, and ϕrisk will need to be changed. Compliance with the

precautionary approach can be achieved by including a penalty in the fitness when the risk

exceeds 5%, which was implemented by replacing ϕrisk with a fitness function component for

which the fitness value was linked to the Blim risk (PBlim) via a penalty function Ω:

ϕrisk-PA = − Ω (PBlim) , (8.8)

and

Ω (PBlim) = τm

1 + e−(PBlim −τi)τs
. (8.9)

This function has a sigmoid shape (Figure 8.2) and is characterised by three parameters; τm

defines the maximum penalty, τi the inflection point and τs the steepness of the curve. The

three parameters’ values were based on considerations for one example stock (pollack, Pollachius

pollachius). When pollack was projected forward with zero catch, the sum of ϕSSB+ϕCatch+ϕICV

[Equations (8.4), (8.5), and (8.7)] had an absolute value of just below 5. Therefore, the maximum

penalty τm was set to 5. This parameterisation had the effect that the rfb rule parameterisation

leading to zero-catch always had higher fitness than the rfb rule parameterisations where Blim

risk exceeded 5%. The penalty curve inflection point was set to τi = 0.06 so that the risk could
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slightly exceed 5% without immediately incurring the maximum penalty. The penalty steepness

was set to τs = 500 so that the penalty quickly reached its maximum value but avoided a

knife-edge which might cause problems during the optimisation.
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Blim risk
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Figure 8.2: Fitness penalty (Ω) as a function of Blim risk (PBlim), as defined in Equation (8.9).
The vertical red line represents the Blim risk limit of 5%.

The final fitness function, which included MSY objectives for catch and SSB and included

precautionary considerations for the risk, was defined as:

ϕMSY-PA = ϕSSB + ϕCatch + ϕrisk-PA + ϕICV. (8.10)

Each of the elements in ϕMSY-PA is negative because the genetic algorithm maximised the

fitness. The fitness value of ϕMSY-PA quantifies the management performance of the simulation

results (see e.g. Figures 8.5 and 8.7, described in the Results section). Fitness values closer

to 0 (less negative) indicate better performance. The aim of the optimisation procedure was

to provide precautionary management solutions, and options where risk exceeds 5% are clearly

indicated by red shading.

8.4.5 Scenarios

The scenarios explored were:

1. Sensitivity. Pollack was chosen as a typical example stock (k = 0.19 year−1, a medium

value within the range for which the rfb rule performed reasonably; Fischer et al., 2020,

Chapter 6). As a baseline, the rfb rule was tuned solely with the multiplier [x in Equation

(8.2)] and all remaining parameters set to their default values (see Table 8.1) so that

the Blim risk was 5%. Subsequently, the sensitivity of the Blim risk to the following
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simulation conditions was explored: the definition of Blim, the starting condition of the

stock before the implementation of the rfb rule, the length of the implementation period,

the observation uncertainty (for biomass index and mean catch length, σobs), recruitment

variability (σR) and recruitment steepness (h). For the runs considering the Blim definition

and the stock status (SSBy=0/BMSY), the number of simulation replicates was increased

from 500 to 10,000 so that they could be split into groups (with steps of 0.1BMSY), and

sufficient replicates in each group were available to calculate Blim risk (> 200 replicates

for all groups with SSBy=0/BMSY ≤ 1.5).

2. Short- vs long-term optimisation. The standard implementation period for the rfb

rule was 50 years and the optimisation considered the performance over the full period. The

impact of this implementation period on Blim risk and catch was explored by considering

three time horizons; the first 10 years (years 1-10), the last 10 years (years 41-50), and all

years (years 1-50).

3. rfb rule parameters. The impact of using all or a subset of the 10 tuneable parameters of

the rfb rule on achieving the precautionary management objectives (SSB, catch, Blim risk

and ICV, summarised by ϕMSY-PA) was explored for the example stock (pollack).

4. Risk limit. The sensitivity of the optimisation (SSB, catch, Blim risk and ICV) to the

5% Blim risk limit was explored for all 29 stocks. For this purpose, the rfb rule was tuned

with the multiplier (x), and the remaining parameters were set to their default values. A

comparison was made between the default 5% risk limit, doubling the risk limit to 10%,

and an additive 5% point risk limit increase, defined as the stock-specific Blim risk under

no fishing and adding 5% points on top of that.

5. Stock-specific optimisation. The genetic algorithm was applied to optimise the full rfb

rule using ϕMSY-PA for all 29 stocks and the management performance was summarised

with the value of ϕMSY-PA.

6. Comparison to MSY and ICES rule. The results of the optimisation process from

the previous step (including all rfb rule parameters) were compared to the results from the

previous chapter (Chapter 7; Fischer et al., 2021a), which applied the ϕMSY fitness function

and also tested the current ICES 2 over 3 advice rule for category 3 data-limited stocks.

The 2 over 3 rule is essentially a simplification of the rfb rule (with n0 = 1, n1 = 2, n2 = 3,
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er = 1, ef = 0, eb = 0, v = 2, x = 1, uu = 1.2 and ul = 0.8) but includes a precautionary

buffer. This buffer reduces the catch advice by 20% if either fishing mortality is above

its MSY reference level, or biomass below half its MSY reference level, based on MSY

proxy reference evaluations, such as with the surplus production in continuous time model

(SPiCT; Pedersen & Berg, 2017), and can be applied once every three years (see Fischer

et al., 2021a, and Chapter 7 for details on the implementation).

7. Uncertainty cap The optimisations of the rfb rule in the previous points either did

not include the uncertainty cap, or the values of the uncertainty cap were part of the

optimisation procedure. Fisheries managers might insist on the inclusion of an uncertainty

cap to avoid large catch variability. Therefore, a final set of simulations was conducted

where the uncertainty cap in the optimisation was fixed to the values (+20%, -30%, i.e.

uu = 1.2 and ul = 0.7) suggested by Fischer et al. (2020, Chapter 6).

8.4.6 Data and software

The MSE framework was the same as developed in the previous chapter (see Chapter 7) and

based on FLR (Kell et al., 2007). The results of this study are fully reproducible and input data,

software code, and summarised results as presented in this chapter were made open source and

are available from GitHub at https://git.io/JCEbw.

8.5 Results

8.5.1 Sensitivity

Figure 8.3 summarises the influence of the simulation specifications on Blim risk for pollack

in the random fishing history. A Blim risk of 5% was achieved when setting the multiplier to

x = 0.75 (Figure 8.3a), and this parameterisation was used as the baseline for the sensitivity

analyses. Blim risk was sensitive to the definition of Blim (larger reference points reduced the

risk), the initial stock status before the implementation of the rfb rule (stronger initial depletion

caused higher risks), the length of the implementation (risk declined over time), observation

uncertainty for the biomass index and mean catch length (higher uncertainty increased the risk)

and recruitment steepness (higher steepness reduced the risk, Figure 8.3b-e,g). The Blim risk

was insensitive to recruitment variability for x = 0.75; however, with larger multipliers (e.g.

x = 1), the risk increased with increasing recruitment variability (Figure 8.3f).
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Figure 8.3: Summary of the sensitivity analyses of Blim risk to simulation conditions for pollack
under the random fishing history. Blim risk reaches 5% for a multiplier of x = 0.75 of the rfb rule
(a), which is used for the remaining sensitivity analyses. Shown is the Blim risk depending on the
definition of Blim, including a histogram of the distribution of SSB values (b), the initial stocks
status before the implementation of the rfb rule (c), the implementation period (d), the level
of observation uncertainty for both the biomass index and mean catch length (e), recruitment
variability (f) and recruitment steepness (g). The solid red horizontal line indicates the 5% risk
limit, and the dotted vertical line the default parameterisations. In (d), shown are both the
“annual” risk and the “total” risk from the start of the projection to the current year. The
risk curve for recruitment variability (f) is flat for x = 0.75, and therefore sensitivity is also
illustrated for x = 1.

8.5.2 Short- vs long-term optimisation

The selection of the time period over which the summary statistics are calculated influenced

the selection of an rfb rule parameterisation so that the 5% Blim risk limit was met. This is

shown for two stocks in Figure 8.4. For pollack, in the one-way fishing history, x = 0.76 met

the risk requirement when the full 50-year projection is considered. When only the last 10 years

of the projection were taken into account, the multiplier could increase to x = 0.92. However,

for the first 10 years of the simulation, no multiplier led to Blim risk ≤ 5%. Short-term (first

10 years) risk for none of the faster-growing species (k ≥ 0.32year−1) could be reduced to 5%.
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Figure 8.4: Impact of the time period used for calculating summary statistics. Results are shown
for two stocks; pollack (pol) and herring (her) in the one-way fishing history. The red horizontal
line indicates the 5% risk limit. Results for the remaining stocks are included in Figure D.1 in
Appendix D.

The short-term risk was more influenced by the starting condition of the simulation (i.e. fishing

history), compared to calculating risk over a longer time.

8.5.3 rfb rule parameters

The outcome of including different elements of the rfb rule in optimising the rule for pollack is

shown in Figure 8.5, and the optimised parameterisations are listed in Table D.1 in Appendix D.

The results were similar for both fishing histories. Including only the multiplier [x, see Equation

(8.2) and Table 8.1] was sufficient to reduce the Blim risk to 5% with the ϕMSY-PA fitness function

of the genetic algorithm. However, this risk reduction led to a substantial loss of catch and high

SSB compared to the default (i.e. not optimised) rfb rule parameterisation. The performance

could be substantially improved (higher yield while staying within the 5% risk limit) when

more elements of the rule were introduced (n0, n1, n2, er, ef , eb, and v). The uncertainty cap

(restricting the difference of the catch advice compared to the previously realised catch; uu and

ul) on its own could not reduce the risk to 5%. Including the uncertainty cap in combination

with other rfb rule parameters (either with the multiplier or with all parameters) did not affect

the optimisation and the optimised parameterisation kept the default uncertainty cap (i.e. no

cap).
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Figure 8.5: Results of using different elements of the rfb rule in the optimisation procedure
(with ϕMSY-PA) for pollack for two fishing histories (one-way and random). All optimisations
apart from the default use the genetic algorithm. The red horizontal line in the third row of
plots highlights the 5% Blim risk limit. Fitness values (last row) where the risk exceeds 5% are
highlighted in red. Results marked with * are shown again in Figure 8.7 (c, f, g) for comparison.

8.5.4 Risk limit

The selection of the Blim risk limit had a substantial impact on the optimised rfb rule para-

meterisation. An analysis of the risk limits related to the selection of the rule’s multiplier x is

shown in Figure 8.6 for four example stocks (the remaining stocks are presented in Figure D.2 in

Appendix D). It was possible for all 29 stocks (and both fishing histories) to set a multiplier that

reduced the risk to ≤ 5%. An explicit 5% risk limit was the most restrictive for all stocks and

resulted in the lowest long-term catch, followed by the additive 5% point and the 10% limits.

8.5.5 Stock-specific optimisation

Figure 8.7 shows the management performance of the rfb rule for the various optimisations, a

comparison with the results of Fischer et al. (2021a, optimisation without the risk limit, and the

2 over 3 rule, see Chapter 7) and a zero fishing option. The performance is expressed through the

fitness [ϕMSY-PA, Equation (8.10)] and non-precautionary parameterisations (Blim risk > 5%)
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Figure 8.6: Impact of different precautionary Blim risk limits on summary statistics in optimising
the rfb rule with a multiplier (the remaining parameters are set to their default values of Table
8.1). Results are shown for four example stocks; blackbellied angler (ang3), pollack (pol),
turbot (tur) and sandeel (san). The optimised solutions are highlighted with symbols. F0+5%
indicates the additive 5% point risk limit increase compared to no fishing. The “5%” risk limit
optimisation results (triangles) for pollack correspond to the “multiplier” optimisation in Figure
8.5.

are clearly highlighted in red. The fitness split into its elements (SSB, catch, ICV, risk penalty)

is available from Figure D.3 in Appendix D.

For all 29 stocks and both fishing histories, the Blim risk could be reduced to 5%, both when

using only the multiplier (f in Figure 8.7) or all rfb rule parameters in the optimisation (g in

Figure 8.7) with the genetic algorithm. When using only the multiplier, the catches were often

low and SSB well above BMSY. Including all rfb rule parameters in the optimisation improved

performance for most stocks, with higher catches while keeping Blim risk within the 5% limit.

The performance of the rule for the higher-k stocks (k ≥ 0.32 year−1) was poor (high Blim risk,

low catch/MSY), and meeting the 5% risk limit was only possible by reducing catches to zero

or near-zero. The optimised rfb rule parameterisations were specific to the stock and fishing

history and are summarised in Table D.1 in Appendix D.

8.5.6 Comparison to MSY and ICES rule

Figure 8.7 includes a comparison of the performance of the ϕMSY-PA-optimised rfb rule (f, g) to

the optimisation with ϕMSY (d, e) of Fischer et al. (2021a, Chapter 7) and the ICES 2 over 3

rule (b). The ICES 2 over 3 rule often led to high Blim risks and risk was always > 5%. There

were clear trade-offs between the ϕMSY-optimised and the ϕMSY-PA-optimised rfb rule, where the
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Figure 8.7: Fitness (ϕMSY-PA) as a measure of management performance of the rfb rule, achieved through
optimisation with the genetic algorithm, and comparison to a “zero-fishing” option (a) and the 2 over
3 rule (b, from Fischer et al., 2021a, Chapter 7). Non-precautionary management (Blim risk exceeds
5%) is highlighted in red. “rfb: default” denotes the non-optimised parameterisation (c), “rfb: MSY”
are the parameterisations optimised without the risk limit (d, e, from Fischer et al., 2021a, Chapter
7), “rfb: MSY-PA” include the 5% risk limit (f-j), “rfb (capped)” indicates that the uncertainty cap is
fixed (+20%, -30%, h) and for “rfb (cond. capped)” the cap is conditional and only implemented when
I ≥ Itrigger in Equation (8.2) (i, j). The “mult” indicates optimisations with only the multiplier of the
rfb rule (d, f, h, i) and “all” with all parameters (e, g, j). The labels highlighted by * (c, f, g) refer to the
same optimisations shown in Figure 8.5 for pollack.
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first delivered highest yields close to BMSY but Blim risks above 5%, whereas the latter resulted

in Blim risks within the 5% limit, but with markedly lower yields.

8.5.7 Uncertainty cap

For all but two stocks (lesser spotted dogfish, syc2 and golden redfish, smn), fixing the uncer-

tainty cap (limiting catch advice increase to +20% and the decrease to −30%) meant that the

optimisation of the rfb rule with ϕMSY-PA and the multiplier was impaired and the risk could

not be reduced to 5% in at least one of the fishing histories (h in Figure 8.7). To overcome

this problem, the rfb rule was tested with a conditional uncertainty cap, where the cap is only

applied when the biomass index is above its threshold level [I ≥ Itrigger in Equation (8.2)]. The

results of these optimisations (i and j in Figure 8.7) show that the 5% risk limit could be met

for most stocks, at least when the optimisation was conducted with all parameters. Exceptions

are the four fastest-growing species (John Dory, jnd, European pilchard, sar, herring, her, and

sandeel, san), where the inclusion of the conditional uncertainty cap did not allow the risk to

meet the 5% limit. In some cases (see, e.g. plaice, ple, and turbot, tur, in Figure 8.7), the

introduction of the conditional cap resulted in a better fitness when the optimisation included

all parameters (j), compared to the free selection of the (unconditional) cap (g).

8.6 Discussion

The outcomes of this study were manifold, and the main results are summarised in Figure 8.7.

The key message is that explicit precautionary consideration (such as the 5% risk limit) could

be incorporated into data-limited fisheries management, shown here with the example of the rfb

rule and through the application of a genetic algorithm. This approach allowed the specification

of management objectives and the exploration of trade-offs. The level of complexity of a decision

rule can impact the overall management performance and more complex case-specific adaptions

delivered higher yield while remaining precautionary.

Results of any simulation study depend on the simulation specifications, and models are

simplifications of reality (Burnham, 2004). The present study is no exception, and the sensitivity

analysis reiterated this by showing that the presumed precautionary management performance

of the rfb rule (quantified through the Blim risk) was influenced by simulated conditions such

as the initial stock status. The MSE concept inherently relies on simulations and associated
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assumptions, which can lead to criticism (Rochet & Rice, 2009, 2010; Kraak et al., 2010), but

following best practices (e.g. Punt et al., 2016) and including a wide range of uncertainties can

restore confidence in the conclusions (Butterworth et al., 2010).

For data-rich stocks, operating models can be conditioned on analytical stock assessments,

which provide crucial knowledge about stock status relative to reference points, intrinsic popula-

tion dynamics, mechanistic relationships between biological parameters (e.g. stock-recruitment

models) and uncertainty associated with model estimates and observations. The consideration

of uncertainty is a fundamental step when conducting MSE evaluations, usually implemented by

conditioning a range of operating models on available data. The lack of such data in data-limited

situations implies adopting a potentially arbitrary set of simulation assumptions. It is therefore

important to include a range of sensitivity analyses to ensure the robustness of any conclusions

drawn.

Uncertainty is exacerbated for simulations of the rfb rule because the rule is meant to be

applied in data-limited situations. For example, the biomass limit reference point (Blim) was

defined in terms of recruitment impairment (Fischer et al., 2020, Chapters 6 and 7) and is

therefore dependent on recruitment steepness, which is difficult to estimate even for data-rich

stocks. However, the value of Blim relative to unfished biomass, 0.16B0, closely resembles the

generic value of 0.2B0 adopted by other management bodies such as the International Whaling

Commission (IWC), the Commission for the Conservation of Antarctic Marine Living Resources

(CCAMLR), and Australia and New Zealand (Preece et al., 2012).

A 5% limit is commonly used in many scientific fields to describe rare events or to safeguard

against their occurrence, e.g. by defining that statistical analyses are significant for p ≤ 0.05.

However, this limit itself is controversial in the scientific community (Wasserstein & Lazar,

2016; Amrhein et al., 2019). The origin of the 5% limit used in the ICES interpretation of

the precautionary approach is somewhat opaque. The approach was initially introduced into

the ICES fisheries advice framework without specific risk limits, and stated that limit reference

points should be avoided with a high probability (ICES, 1997), with reference to a United Nations

agreement on the implementation of the precautionary approach. Subsequently, referring to the

considerations of Butterworth and Bergh (1993) on precautionary decision rules, ICES (1998, p.

25) note that an “example of a precautionary criterion for management might be [defined as a]

probability of less than 5% of reducing the resource below B within 10 years”, without specifying

or giving justifications for the 5%, the reference point B or the 10-year period. Such risk levels
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were originally meant as interim solutions until more appropriate risk levels had been agreed

among stakeholders. However, this value has not changed since then and is currently enshrined

into the ICES advice framework (ICES, 2019a) and also recommended for MSE testing of data-

limited management procedures (ICES, 2017f). ICES (2020b) note that the appropriateness of

the 5% risk limit was queried again with advice recipients in 2020 and recipients expressed their

satisfaction about using this value without suggesting alternatives.

In other parts of the world, risk considerations similar to the ICES precautionary approach

are applicable. For example, the harvest strategy standard for New Zealand fisheries (Ministry

of Fisheries, 2008) includes a clause stipulating that management procedures need to ensure that

breaching a soft limit does not exceed 5%. The justification of using specific risk limits is always

challenging and can easily draw criticism. The benefit of using a modelling approach is that

different risk limits can be tested and their implications on management performance can be

illustrated, which in turn allows an informed judgement about the acceptability of a particular

risk limit.

The choice of probability can also have an economic impact since a fishery might secure

a price premium if it can gain an ecolabel certificate. For example, the Marine Stewardship

Council (MSC) fisheries standard (MSC, 2018) requires that it must be highly likely (≥ 80th

percentile) or there is a high degree of certainty (≥ 95th percentile) that the stock is above the

point at which recruitment is impaired.

Specific risk values crucially influence management rules and decisions. As shown here for the

rfb rule, doubling the allowed risk to 10% had a large impact on the optimised rule’s performance

and resulted in much higher long-term catches while being precautionary at a 10% risk level. A

more restrictive risk limit such as 1% would be impossible to meet for some stocks because the

risk without fishing exceeds 1% for some stocks and fishing histories. For those stocks for which

this risk limit could be met, this would lead to a strong reduction catch or is only possible by

setting the catch to zero.

Relative risk metrics might be considered a plausible alternative to absolute risk. Relative

risk can be defined as the risk relative to some baseline risk, such as the risk without any fishing

activity. The benefit of this approach is that natural variability is explicitly considered, e.g.

when a fish stock naturally exhibits high fluctuations and, therefore, the risk of falling below

a limit reference point is high, even without any fishing activity. One example explored here

for the rfb rule was an additive risk of 5% points, added on top of the risk without fishing.
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On the other hand, defining the risk increase of 5% points is arbitrary in the same way as

defining an absolute risk limit. Another alternative to quantify risk is the approach used for

South African short-lived pelagic species where the shift of the biomass distribution of a stock

is compared to the distribution under no fishing (de Moor et al., 2011), but generally only

possible if such information is available. The definition and usefulness of risk criteria in fisheries

management should be explored further, in particular, whether the same approach should be

applied irrespective of life history or other stock characteristics. Tools such as genetic algorithms

can be useful because they allow the exploration of management solutions and illustrate trade-

offs.

Fischer et al. (2020, Chapter 6) developed the operating models for the 29 stocks used in

the simulations, and provided extensive sensitivity analyses on their assumptions and paramet-

erisations, including the appropriateness of levels of uncertainty. The simulation approach used

here can be considered generic, but conditioned on life-history traits. Generic simulations need

to account for additional uncertainty, which was implemented here by considering two altern-

ative fishing histories, one where the starting condition implied a high stock depletion, and the

other provided a large spread of different depletion levels. For optimum performance of any

decision rule, more data should be collected to enable case-specific testing and optimisation.

Such case-specific simulations are explored in Chapter 11.

For all 29 stocks and both fishing histories simulated in this study, projecting forward with

zero fishing led to Blim risks below 5%, which meant that there was scope for fishing activities

while remaining within the 5% risk limit. The 2 over 3 rule generally resulted in high Blim risks

(16-73%), and its performance was strongly dependent on the initial stock status. Therefore,

the current management of ICES category 3 data-limited stocks based on the 2 over 3 rule with

uncertainty cap and precautionary buffer cannot be considered precautionary. Except for two

slow-growing stocks (Atlantic wolffish and megrim in the one-way fishing history), applying the

default rfb rule parameterisation led to risks above 5%.

However, when the rfb rule was optimised with the genetic algorithm, and the fitness function

included the 5% risk limit, an optimised parameterisation of the rfb rule was found, which

complied with the risk limit, both when only modifying the rule’s multiplier or the complete

set of parameters. However, clear trade-offs between the two solutions were evident. The

parameterisation based on the multiplier achieved risk compliance by reducing the catch advice

and forfeiting much of the long-term catch. On the other hand, the solution with all of the rfb
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rule’s parameters tuned resulted in better performance with higher catches. The comparison of

the optimised rfb rule with (this chapter) and without the 5% risk limit (Fischer et al., 2021a,

Chapter 7) revealed that the inclusion of the limit was restrictive and led to lower catches.

The decision on which approach should be implemented in reality is essentially up to managers.

Including risk limits can be restrictive; however, this might be considered necessary to ensure

precautionary management. An interesting observation was made about the implementation

of the uncertainty cap. For pollack, the inclusion of the cap did not improve management

performance, and the optimisation procedure selected the parameterisation, which turned off

the cap. When a fixed cap (+20%, -30%) was enforced, for most stocks, this meant that the 5%

risk limit could not be met. To avoid this, the implementation of a conditional uncertainty cap

(+20%, -30%) is suggested, which is only activated when the biomass index is at or above its

trigger value.

Previous work showed that the rfb rule resulted in poor performance with high risks of

stock collapses and low yields for faster-growing stocks (with von Bertalanffy growth parameter

k ≥ 0.32 year−1; Fischer et al., 2020, Chapter 6), and even optimising the rule towards MSY

objectives did not markedly improve the outcome (Fischer et al., 2021a, Chapter 7). The general

conclusion was that the rfb rule should not be implemented for such fast-growing stocks because

of their highly variable populations dynamics and dependence on recruitment success (see, e.g.

Cury et al., 2014). The present work supports this recommendation. The rfb rule could be

optimised to meet a specific precautionary criterion (constraining the risk of the stock falling

below Blim to a specific limit). Nevertheless, meeting this criterion was only possible by accepting

an extreme trade-off for the yield, i.e. advising very low precautionary catch levels. Alternative

management procedures, e.g. based on harvest rates or escapement strategies (ICES, 2020a),

appear more suitable and are explored in Chapters 9 and 10.

The main recommendation from this chapter is to replace the 2 over 3 rule with the rfb rule for

ICES category 3 data-limited stocks with slow to medium individual growth (k ≤ 0.32 year−1).

If case-specific simulations are not possible, the rfb rule can be applied with generic multipliers

meant to ensure precautionary management. Based on the results of this work, ICES guidelines

have been drafted (ICES, 2020a). The justification for selecting specific multipliers is illustrated

in Figure 8.8. The generic multipliers were set based on where the Blim average risk met 5%

(median over individual stocks and combining both fishing histories). This led to a generic
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multiplier of x = 0.95 for low-k stocks (k < 0.2 year−1) and x = 0.9 for medium-k stocks

(0.2 year−1 ≤ k ≤ 0.32 year−1).
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Figure 8.8: Justification of generic multipliers for the rfb rule. Results are shown for 100-year
simulations and stocks are split into low-k (k < 0.20 year−1) and medium-k (0.20 year−1 ≤ k ≤
0.32 year−1) groups. (a) illustrates where the median Blim risk meets 5% and (b) the stock
specific optimal multipliers in relation to the generic multipliers (horizontal black lines).

The rfb rule was already applied this way to the first two stocks in the 2021 ICES advice,

plaice in the Celtic Sea south and southwest of Ireland (ICES divisions 7.h-k; ICES, 2021m)

and sole in the Cantabrian Sea and Atlantic Iberian water (ICES divisions 8.c and 9.a; ICES,

2021l). A further rollout is anticipated for 2022. Ideally, case-specific simulations are conducted

and should consider stock characteristics, such as adapting the simulation period to life history,

using more specific uncertainty estimates (e.g. correlation structure of residuals), and alternative

operating models. An example for such a situation is the western English Channel plaice stock,

where ICES advice is currently based on the 2 over 3 rule (ICES, 2021k), but this stock is

relatively data-rich, facilitating case-specific simulations and will be used as a case study in

Chapter 11. Case-specific analyses are likely to lead to better overall management performance

while maintaining precautionary principles.

8.7 Conclusion

This chapter was the third chapter of this PhD thesis exploring the empirical rfb rule. The

initial exploration of the rfb rule in Chapter 6 revealed that the rule’s management performance

depends on the individual growth rate of the species, and better performance was observed for

slower-growing species. In Chapter 7, an optimisation procedure based on a genetic algorithm

was implemented and found suitable to improve the rule’s performance towards specific man-
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agement objectives. The present chapter went further and included explicit risk limits to ensure

compliance with the precautionary approach and found that such limits can be considered. This

study concludes the generic analyses of the rfb rule and the following chapter (Chapter 9) ex-

plores an alternative approach based on a relative harvest rate approach. This harvest rate

approach is particularly aimed at closing the gap left by the rfb rule, i.e. for faster-growing

species for which the rfb rule should not be applied.
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Chapter 9

Exploring a relative harvest rate

strategy for moderately data-limited

fisheries management1

1This chapter is an adaptation of Fischer et al. (2022).
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9.1 Foreword

The previous three chapters were on the empirical trend-based rfb rule. This chapter explores

an alternative empirical control rule based on a harvest rate. Preliminary results were presented

at the tenth International Council for the Exploration of the Sea (ICES) Workshop on the De-

velopment of Quantitative Assessment Methodologies based on LIFE-history traits, exploitation

characteristics, and other relevant parameters for data-limited stocks (ICES WKLIFE X; ICES,

2020a). Subsequently, additional analyses were undertaken, and the work was peer-reviewed

and published in Fischer et al. (2022):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2022). Exploring

a relative harvest rate strategy for moderately data-limited fisheries management. ICES

Journal of Marine Science, 12 pp. https://doi.org/10.1093/icesjms/fsac103

The following sections in this chapter are an adaptation of this publication.

9.2 Abstract

Moderately data-limited fisheries can be managed with simple empirical management procedures

without analytical stock assessments. Often, control rules adjust advised catches by the trend

of an abundance index. This chapter explores an alternative approach where a relative harvest

rate, defined by the catch relative to a biomass index, is used and the target level derived from

analysing historical catch length data. This harvest rate rule was tested generically with man-

agement strategy evaluation. A genetic algorithm was deployed as an optimisation procedure

to tune the parameters of the control rule to meet maximum sustainable yield and precaution-

ary management objectives. Results indicated that this method could outperform trend-based

strategies, particularly when optimised, achieving higher long-term yields while remaining pre-

cautionary. However, optimum harvest rate levels can be narrow and challenging to find because

they depend on historical exploitation and life history characteristics. Misspecification of target

levels can have a detrimental impact on management. Nevertheless, harvest rates appear to be

a suitable management option for moderately data-limited resources, and their application has

modest data requirements. Harvest rate strategies are especially suitable for stocks for which

case-specific analyses can be conducted.
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9.3 Introduction

Fisheries management should ensure the sustainable exploitation of harvested fish stocks (Hil-

born & Walters, 1992). Management principles such as maximum sustainable yield (MSY,

i.e. keeping the stock at or above a level where it is most productive) or the precautionary

approach (i.e. reduce the risk of stock depletion; Garcia, 1996) are often mandated through na-

tional or international legislation, such as the European Union’s common fisheries policy (EU,

2013). However, most of the world’s fish stocks are considered data-limited and complex stock

assessments or forecasts do not exist (Rosenberg et al., 2014). For such stocks, simpler stock

assessment models can sometimes be used to help comply with these management principles. Al-

ternatively, model-free management procedures relying only on empirical data have been shown

to be viable management options (Geromont & Butterworth, 2015a; Carruthers et al., 2016).

ICES is the provider of scientific advice on fishing opportunities for many fish stocks in the

Northeast Atlantic (ICES, 2021a) and classifies stocks into six categories (Table 9.1). According

to their stock assessment database (ICES, 2021i), ICES provided advice for 175 fish stocks

in 2020, of which around 50% were considered data-limited (ICES categories 3-6). Of these

data-limited stocks, 55% were classified as category 3. For category 3 stocks, catches, including

catch length data, as well as a stock index (often from a scientific survey), exist (ICES, 2021a).

While the data might be enough to apply surplus production or integrated assessment models,

these models are not used because of insufficiently long time series, lack of contrast in the data

to inform models, violations of model assumptions, model convergence issues, unacceptably

high uncertainty estimates, or because models fail acceptance criteria (Punt et al., 2020). This

chapter (and the entire thesis) follow the ICES interpretation of the term “data-limited”, which

might be considered as “data-moderate” or even “data-rich” elsewhere.

There are two main approaches to how empirical management procedures generate catch

advice: (1) indicator-adjusted catch rules which adjust the previous catch by a multiplier derived

from an indicator, such as the trend from a stock index, and (2) by defining a harvest rate and

applying this to a biomass estimate. ICES is currently in the process of revising its data-

limited management framework from 2012 (ICES, 2012b) and is replacing methods for category

3 stocks (ICES, 2020a, 2022b). One of the replacement methods is the rfb rule (Fischer et al.,

2020; Fischer et al., 2021a, 2021b, see Chapters 6, 7, and 8), an indicator-adjusted catch rule

in which the catch advice is adjusted by the trend in a relative biomass index and the signal
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from length data. However, indicator-adjusted catch rules can be problematic because the new

advice is directly linked to the previous value, which can induce oscillatory behaviour, restrict

flexibility, or react slowly to changes in the stock if the index trend is estimated over several

historical years.

Table 9.1: Overview of the ICES data categories. Data and advice method columns describe
typical scenarios but deviations from these exist. Revisions for category 2 and 3 suggested by
ICES (2020a, 2022b) are included.

Cate-
gory

Description
(ICES, 2021a)

Typical data Typical advice
method

1 Stocks with quantitative
assessments

Catch and survey data
(mostly age-structured)

Stock assessment &
short-term forecast

2 Stocks with analytical
assessments and forecasts
that are only treated
qualitatively

Catch and survey data
(mostly age-aggregated)

Stock assessment &
short-term forecast

3 Stocks for which survey-based
assessments or exploratory
assessments indicate trends

Catch (with length data)
and stock index
(survey/commercial) without
age structure, life-history
information

Empirical
(model-free)
methods

4 Nephrops stocks where
information on possible
abundance can be inferred

Catch, recent survey index
value, biological data (can
be borrowed)

Precautionary MSY
harvest rate applied
to index

5 Stocks for which either only
data on landings or a short
time-series of catch are
available

Landings Recent advice kept
or reduced (if
previous reduction
was more than 3
years ago)

6 Stocks for which there are
negligible landings and stocks
caught in minor amounts as
bycatch

Unreliable catch Recent advice kept
or reduced (if
previous reduction
was more than 3
years ago)

The use of harvest rates can overcome some of the shortcomings of indicator-adjusted catch

rules. In its simplest form, a harvest rate is the catch divided by the abundance of an exploited

stock, e.g. derived from a stock index. This allows the definition of a target harvest rate,

implemented by multiplying it with the current index value to calculate a new catch limit. A

potential benefit of such an approach is that a new catch advice can be set independently of the

previous catch. A main challenge for harvest rate-based management in a data-limited situation

is the definition of the target level. Here, the situation where the target harvest rate is derived

empirically (as opposed to using a model in data-rich situations) is considered.
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The use of harvest rates for data-limited fisheries management is not new. The 2012 ICES

framework for data-limited stocks includes an Fproxy rule (method 3.3 of ICES, 2012b). This

rule can be considered a variant of a harvest rate rule, where a target is set based on historical

Fproxy values (catch divided by stock index) and used to derive catch advice for the next year,

with an uncertainty cap (limiting changes in catch advice to 20%) and a precautionary buffer

(reducing the catch advice by 20%). This rule has occasionally been used in ICES (ICES,

2021i), e.g. for East and South Greenland cod (Gadus morhua, 2016-2017; ICES, 2017a), East

Greenland and Iceland grounds greater silver smelt Argentina silus, 2012-2019; ICES, 2021e and

blue ling (Molva dypterygia, 2012-2018; ICES, 2021c). In these cases, the management target

was largely based on expert judgement. This included selecting a time period of several years

based on considerations such as whether Fproxy values appeared stable or a stock index indicated

a generally stable or increasing trend for stock biomass. The target harvest rate was then defined

as the average Fproxy for these years.

Harvest rates are commonly used for data-rich fisheries management and this is often as-

sociated with running stock assessment models to estimate the stock size. The ICES advisory

framework for data-rich stocks goes one step further by conducting short-term forecasts and

setting catch limits based on a hierarchy of advice rules (ICES, 2019a, 2021a). Previous data-

limited simulation studies considered the applicability of control rules by comparing stock index

values relative to a target value, but either used the comparison to adjust a previous catch

(Geromont & Butterworth, 2015a; Carruthers et al., 2016) or to move the current catch towards

a target level (Geromont & Butterworth, 2015b). The direct application of harvest rates based

on a stock index has not been considered for data-limited fisheries management recently in the

peer-reviewed scientific literature.

This chapter explores the applicability of a relative harvest rate rule for moderately data-

limited fisheries management, in particular how it could complement the current set of rules,

especially where current approaches are inadequate and do not follow required management

principles. To accomplish this, management strategy evaluation (MSE; Punt et al., 2016), in the

sense of a closed-loop simulation for evaluating management procedures but without extensive

stakeholder engagement is used.

MSE (Smith, 1994; Punt et al., 2016) is widely considered the state-of-the-art for exploring

management strategies. It is crucial that candidate management procedures are simulation

tested before implementation to ensure their robustness to a range of uncertainties. Many MSEs
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are conducted on a case-specific basis for well monitored and commercially important species,

e.g. international tuna stocks (Sharma et al., 2020). The simulation of stocks with limited data

can be more challenging due to the lack of data and knowledge. Nevertheless, notable studies

screened various data-limited methods (Geromont & Butterworth, 2015a; Jardim et al., 2015;

Carruthers et al., 2016).

To conduct the MSE, the generic operating models described in Chapter 5 were used because

these cover a wide range of life-history traits. Furthermore, Fischer et al. (2021a, see Chapter

7) showed that the performance of control rules could be substantially improved through tuning

with a genetic algorithm. A genetic algorithm is a computationally efficient method for solving

multi-dimensional optimisation problems, and works by mimicking principles of biological evol-

ution by introducing variability into the tuneable parameters and subjecting parameterisations

to a competitive environment where selection favours individuals with higher fitness (Holland,

1992). In the context of a fisheries management procedure, the elements of a control rule are the

tuneable parameters, and the fitness can be measured as the management performance relative

to agreed management objectives, such as long-term sustainable exploitation. This can include

explicit precautionary considerations (Fischer et al., 2021b, see Chapter 8), such as the 5% risk

limit that is part of the ICES precautionary approach (ICES, 2019a, 2021h).

Specifically, this chapter explores an approach in which a target harvest rate is linked to

empirical data (mean catch length as a proxy for fishing pressure). The resultant management

procedure is simulation tested using MSE, and then optimised considering the ICES precau-

tionary approach and MSY. Finally, the relative harvest rate rule is compared with other more

traditional ICES data-limited fisheries management approaches.

9.4 Methods

9.4.1 Operating Models

The age-structured operating models developed in Chapter 5 in the Fisheries Library in R (FLR;

Kell et al., 2007), and as parameterised in Chapter 7 (Fischer et al., 2021a), were used. These

operating models were generated from life-history parameters and considerations of life-history

relationships, and comprised 29 generic stocks, covering a wide range of life-history traits (see

Table 5.1 in Chapter 5). All operating models were subjected to three 100-year fishing histories

(Figure 9.1; Fischer et al., 2020; Fischer et al., 2021a). In the one-way fishing history, fishing
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mortality (F ) was increased exponentially, in the roller-coaster history, F was first increased but

then decreased again, and in the random history, random F trajectories occurred, leading to a

range of depletion levels at the beginning of the MSE. The operating models were stochastic and

uncertainty was included in 500 simulation replicates through a log-normal process (recruitment

error σR = 0.6, added to the Beverton-Holt stock-recruitment model) and observation errors

(σobs = 0.2, added to the aggregated total biomass and mean catch length indices). These are

the same assumptions as used in the previous two chapters on the rfb rule (Chapters 7 and 8).

Details of the operating models are described in Appendix E.

one−way roller−coaster random
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Figure 9.1: The three fishing histories of the operating models.

9.4.2 Relative harvest rate management procedure

A relative harvest rate H can be defined as the ratio of the catch C divided by a stock size

indicator I, e.g. a biomass index:

Hy = Cy/Iy, (9.1)

for year y. I can be a relative index and does not need to represent the total stock biomass

because it is only used relative to the catch. For simplicity, I was assumed to be a total biomass

index in the simulations. Figure 9.2 explains how a target harvest rate can be derived purely

from empirical data. The procedure consists of determining reference years where historical

mean catch length is above a reference length, calculating the relative harvest rates for these

years, and taking their average to define a target harvest rate Htarget. The MSY proxy reference

length defined by Jardim et al. (2015) is used:

LF =M = 0.75Lc + 0.25L∞, (9.2)
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Figure 9.2: Derivation of a target harvest rate from empirical data. Shown is one example
simulation replicate for pollack. Please note that the index can be a relative index.

where Lc is the length at first capture and L∞ the von Bertalanffy asymptotic length. This

reference length assumes M/k = 1.5 (where k is the von Bertalanffy growth parameter) and

fishing at the natural mortality rate F = M as a proxy for FMSY, and follows the concepts of

Beverton and Holt (1957). This reference length is the same as used for the rfb rule (see Chapters

6, 7, and 8). The length data are only required for setting a target harvest rate (Htarget) and

not used later in the implementation of the management procedure.

This target harvest rate Htarget can then be used to determine the advised catch for the next

year Ay+1:

Ay+1 = I Htarget, (9.3)
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where I is the recent index value. Additional precaution can be introduced with a biomass

safeguard b, which reduces the targeted harvest rate when the index falls below an index trig-

ger value, Itrigger (see Table 9.2). The biomass safeguard b essentially imposes a hockey-stick

functional form on the control rule (Figure 9.3), similar to the ICES MSY advice rule used for

category 1 data-rich stocks (ICES, 2019a).

0

Htarget

0 Itrigger

Index I

H
ar

ve
st

 ra
te

Figure 9.3: Hockey-stick principle of the harvest rate control rule. The harvest rate shown is the
Htarget b component of Equation (9.4) and the shape of the curve is determined by the biomass
safeguard b.

Itrigger can be linked to the lowest observed index value Iloss through a multiplicative buffer

w (see Table 9.2), often set to w = 1.4 in the absence of better knowledge (ICES, 2017f, 2021h).

This biomass safeguard is the same as used for the rfb rule (see Chapters 6, 7, and 8).

In order for the harvest rate control rule to be optimised, the components of the rule can

be made more flexible by adding additional parameters. This allows the components to be

calibrated for best performance:

Ay+1 =
y−n0∑︂

i=y−n0−n1+1

(︃
Ii

n1

)︃
Htarget b x. (9.4)

The relative harvest rate management procedure of Equation (9.4) is referred to as “harvest rate

rule”. See Table 9.2 for details and descriptions of all parameters. The multiplier x is applied

to the entire control rule. However, because the elements of the control rule are multiplicative,

it can also be thought of as being part of the harvest rate (H ′
target = x Htarget), i.e. changing

the target level of the rule.

Finally, the catch advice can be set constant for an interval of v years before the control

rule is applied again, and catch constraints (called uncertainty caps in ICES) limit the allowed

increase (uu) and decrease (ul) of the catch advice. This leads to a total of seven tuneable

parameters (x, n0, n1, w, v, uu, ul).
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Table 9.2: Parameters of the flexible harvest rate rule (as shown in Equation (9.4) and described
in the subsequent text).

Parameter Description Definition Default
Components of the harvest rate rule

A Catch advice See Equation (9.4)
Iy Index value Index value in year y
Htarget Harvest rate

target
Cy/Iy for reference years y

b Biomass safeguard b = min(1, Iy−n0/Itrigger)
x Multiplier x = 1

Generic parameters
y Year Year relative to assessment year
n0 Time lag Offset between last biomass index year

and assessment year
n0 = 1

n1 Index range Number of index years n1 = 1
Itrigger Index trigger Value below which the biomass

safeguard reduces catch advice
Itrigger = wIloss

Iloss Lowest observed index value
w Index trigger buffer Connects Iloss to Itrigger w = 1.4

Additional parameters
v Interval Number of years for which the catch

advice is kept constant
v = 1

uu, ul Upper and lower
uncertainty cap

Catch constraint (upper and lower
limit), restricting the allowed change in
the catch advice Ay+1 relative to last
advice Ay, implemented after deriving
Ay+1 from Equation (9.4):
min {max (ulAy, Ay+1) , uuAy}

uu = ∞,
ul = 0

9.4.3 Optimisation

Fischer et al. (2021a, 2021b, see Chapter 7) showed that a genetic algorithm effectively optim-

ises empirical management procedures towards specific management objectives and defined two

fitness functions:

ϕMSY = −
⃓⃓⃓
B/BMSY − 1

⃓⃓⃓
−
⃓⃓⃓
C/MSY − 1

⃓⃓⃓
− ICV − PBlim (9.5)

and

ϕMSY-PA = −
⃓⃓⃓
B/BMSY − 1

⃓⃓⃓
−
⃓⃓⃓
C/MSY − 1

⃓⃓⃓
− ICV − Ω (PBlim) , (9.6)

where B, C, and ICV are the medians of spawning stock biomass (SSB), catch, and inter-

annual catch variability (calculated over a 50-year projection and 500 simulation replicates),

BMSY and MSY the MSY reference values, Blim risk (PBlim) the risk of the SSB falling below
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the biomass limit reference point (defined as the SSB where recruitment is impaired by 30%,

i.e. Blim = BR=0.7R0), and Ω a penalty function reducing ϕ when Blim risk exceeds 5% (i.e.

formalised the ICES precautionary criterion, Ω (PBlim) = 5/
(︂
1 + e−500(PBlim −0.06)

)︂
). ICV was

defined as |(Cy − Cy−v)/Cy−v| for years y in which a new advice was set and the advice interval

v. The fitness function ϕMSY measured MSY management performance by including all four

summary statistics, i.e. its aim was to move SSB to BMSY, catch to MSY, and reduce ICV and

risk. In ϕMSY-PA, a penalty was applied when risk exceeded 5%. Elements of ϕ are negative

because ϕ was maximised with the genetic algorithm and a maximum fitness of zero implies

SSB is at BMSY, catch at MSY, and ICV is zero, and furthermore, that risk is zero (for ϕMSY)

or well below 5% (for ϕMSY-PA).

9.4.4 Scenarios

The scenarios explored were:

1. Pure harvest rate

First, the pure harvest rate from Equation (9.3) was explored. For this purpose, the

harvest rate was implemented for 100 years and simulations were based on the random

fishing history. The index was a total biomass index at the beginning of the year for which

the catch advice was given (I = Iy+1) and without any observation uncertainty.

The target harvest rate was defined with a uniform distribution H ∼ U(0, 1). This allowed

an analysis of the performance of the pure harvest rate, depending on initial stock depletion

and the level of the harvest rate. The number of simulation replicates was increased to

10,000 to ensure enough replicates for subsets of harvest rates and depletion levels. These

initial simulations served as a baseline to explore the scope of the harvest rate principle.

2. Sensitivity analysis

The sensitivity of the harvest rate rule to the assumed conditions was analysed for the three

main summary statistics (SSB, catch, Blim risk). The baseline was the default harvest rate

rule [Equation (9.4), Table 9.2], calculating the target harvest rate according to Figure 9.2,

applied for 50 years and with 500 simulation replicates, and for the three fishing histories

(one-way, roller-coaster, random). Pollack (pol, Pollachius pollachius), a medium-fast

growing species (k = 0.19 year−1), was chosen as an example stock. This was the same
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example stock used in the previous chapter (Chapter 8), which allowed comparability of

the outcomes of the sensitivity analysis between different management procedures.

The sensitivity analysis considered recruitment variability (0 ≤ σR ≤ 1, default σR = 0.6),

recruitment steepness (0.2 ≤ h ≤ 1, default h = 0.75 year−1), recruitment auto-correlation

(0 ≤ ρR < 1, default ρR = 0), observation uncertainty (length and biomass index, 0 ≤

σobs ≤ 1, default σobs = 0.2), observation auto-correlation (0 ≤ ρobs < 1, default ρobs = 0),

and the duration of the implementation (1-100 years, default 50 years).

Additionally, the sensitivity to stock status prior to implementing the rule (SSBy=0/BMSY)

was evaluated. For this purpose, the random fishing history was used and the number of

simulation replicates increased from 500 to 10,000. Subsequently, the simulation replic-

ates were sorted by SSBy=0/BMSY and split into groups corresponding to different stock

status levels (0 − 1.7BMSY in groups of 0.1BMSY). This way, each group contained > 200

replicates, sufficient to calculate summary statistics.

Lastly, the sensitivity of the harvest rate rule to the index selectivity was evaluated. The

performance of the harvest rate rule with the default index (a total biomass index) was

compared to scenarios where the index selectivity matched maturity (SSB index), fishery

selectivity (commercial index), and for an index with dome-shaped selectivity (Figure E.4

in Appendix E).

3. Harvest rate level

The impact of the level of the target harvest rate on the performance of the harvest rate

rule was explored by implementing the rule with multipliers 0 ≤ x ≤ 2 in steps of 0.01 [but

otherwise default parameters of Equation (9.4)] and with default simulation dimensions

(50 years, 500 replicates) for all stocks.

4. Parameters of the harvest rate rule

The impact of the various parameters of the harvest rule on the optimisation procedure

with the genetic algorithm was explored for pollack. The optimisation was performed

individually for each parameter (x, n0, n1, w, v, uu, or ul), combining both uncertainty

caps (ul and uu), all parameters without the uncertainty cap (x, n0, n1, w, and v), and

all parameters (x, n0, n1, w, v, uu, and ul).
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Following the conclusion of Fischer et al. (2021b, see Chapter 8) that uncertainty caps

can impair the recovery of depleted stocks and make it impossible to meet risk thresholds,

additional optimisations with conditional uncertainty caps (fixed at ul = 0.7, uu = 1.2),

only implemented when I ≥ Itrigger, were conducted for the multiplier and all parameters.

The optimisation was performed for the fitness function aiming at MSY [ϕMSY, Equation

(9.5)] and the fitness function including the precautionary risk limit [ϕMSY-PA, Equation

(9.6)].

5. Optimisation for all stocks

The optimisation procedure with the genetic algorithm is computationally complex; there-

fore, the full optimisation for all stocks was limited to the ϕMSY-PA fitness function. Finally,

the harvest rate rule was compared to two indicator-adjusted catch rules; the 2 over 3 rule

as simulated by Fischer et al. (2021a, see Chapter 7) and the rfb rule from Fischer et al.

(2021b, see Chapter 8). The 2 over 3 rule was the standard ICES method for category 3

stocks until 2021 and adjusts the catch based on the trend from a biomass index. The rfb

rule is intended to replace the 2 over 3 rule and, in addition to the biomass index trend,

also uses catch length data to inform on fishing pressure. Full details of these two catch

rules are available in Chapters 6, 7, and 8 and are summarised in Appendix E.

9.4.5 Data and software

The MSE framework was the same as used in the previous chapters (see Chapters 7 and 8) and

based on FLR (Kell et al., 2007). The results of this study are fully reproducible and input data,

software code, and summarised results as presented in this chapter were made open source and

are available from GitHub at https://git.io/JMFJd.

9.5 Results

9.5.1 Pure harvest rate

When the pure harvest rate was implemented for only 10 years (first row of Figure 9.4), the

realised catch over this period was affected by the initial stock status, with lower catches in

cases of higher depletion but this effect disappeared when the rule was implemented for more

years. Short-term catches could be substantially above MSY, but could not be sustained in the

longer term.
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Figure 9.4: Realised catch for a pure harvest rate management procedure, depending on the level
of the harvest rate, the stock status prior to implementing the rule, and the implementation
period. In this management procedure, the index corresponded to the total biomass at the
beginning of the advice year and no biomass safeguard was used. Shown is the catch relative to
MSY, averaged over two implementation periods (10 and 50 years), and for six example stocks:
blackbellied anglerfish (ang3), pollack (pol), lesserspotted dogfish (syc2), whiting (whg), John
Dory (jnd), and sandeel (san), sorted by von Bertalanffy growth rate k (unit: year−1). The
results for the remaining stocks are included in Figure E.2 in Appendix E.

There was a harvest rate that returned the highest catches; however, the level and spread of

this harvest rate were stock-specific. In general, this high-catch area was at lower harvest rates

for slower-growing stocks and at higher harvest rates for faster-growing stocks. For example, the

harvest rate for blackbellied angler (ang3) resulting in catches > 0.9MSY in the longer term was

in a narrow range with H < 0.15, but for whiting (whg) 0.2 ≤ H ≤ 0.6. For the fastest-growing

stock (sandeel; san), the catch was always low and < 0.3MSY.

There are some exceptions to the general trend, e.g. a lower harvest rate for the very late

maturing lesserspotted dogfish (syc2 in Figure 9.4) or a higher harvest rate for the early maturing

Atlantic wolffish (wlf in Figure E.2 in Appendix E). This behaviour can be explained by the

fact that fishery selectivity was linked to maturity and the harvest rate was proportional to

the total (not exploitable) biomass index. This meant, for example, that for the lesserspotted

dogfish, it was not possible to fish a larger proportion of the stock because younger ages were

not available to the fishery but contributed to the stock biomass (see Figure E.3 in Appendix

E). In contrast, for Atlantic wolffish, more age classes could be fished and this allowed taking a

higher proportion of the stock.
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9.5.2 Sensitivity analysis

The results of the sensitivity analysis for pollack are summarised in Figure 9.5. Higher re-

cruitment variability (i.e. larger recruitment events due to log-normal distributed residuals) or

steepness (i.e. higher productivity at lower stock size) led to higher SSB and catch, and lower

risk. However, for the one-way fishing history, the risk was low (0.03) and unaffected by re-

cruitment variability, only increasing substantially when the steepness was very low (h < 0.5,

default h = 0.75). Increasing observation uncertainty (i.e. representing a more data-limited

situation) caused a lower SSB and catch, and higher risk. Including temporal auto-correlation

for recruitment or observation residuals had negligible effects.

The initial stock status prior to implementing the harvest rate rule correlated positively and

almost linearly with the averaged SSB after implementing the rule and negatively with risk,

meaning that a depleted stock stayed depleted during the application of the rule with default

settings. Regarding the implementation period, the summary statistics showed little variability

and stabilised after around 10 years in the random fishing history. Conversely, for the one-

way and roller-coaster fishing history, SSB and catch were initially low (SSB/BMSY = 0.5 and

catch/MSY = 0.5), increased after the implementation of the harvest rate rule and stabilised

subsequently, leading to a reduction of the initially high risk.

The harvest rate rule was relatively robust to alternative index selectivities because using a

different survey in the projection also meant that the target harvest rate, derived from historical

observations, was changed accordingly. The influence on the long-term performance was negli-

gible, but slight differences in behaviour in the first few years after implementing the harvest rate

rule occurred (Figure 9.6 and Figure E.5 in Appendix E). For example, an SSB index detected

the depletion of the one-way fishing history earlier, resulting in stronger initial catch reductions

and faster stock recovery than the total biomass index.

9.5.3 Harvest rate level

The inclusion of a multiplier had a substantial effect on the performance of the full harvest

rate control rule. A catch maximum was observed for each stock, but the location (i.e. the

multiplier leading to the catch maximum) and catch value depended on the stock and fishing

history (Figure 9.7a).

The general pattern was the same as for the pure harvest rate, and for slower-growing species,

the optimum harvest rate (expressed through the multiplier) and the realised catch were higher
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Figure 9.5: Summary of the sensitivity analysis for pollack. Shown are summary statistics
(SSB, catch and Blim risk) as a result of applying the default harvest rate rule and depending
on simulated conditions (recruitment variability, steepness, observation uncertainty, initial stock
status, and implementation period). Dots are simulation outcomes and the lines are the result
of applying a smoother. Vertical lines indicate default values. For the initial stock status,
simulation replicates were increased from 500 to 10,000 and results are only shown for the
random fishing history. Blim risk for the implementation period is the risk up to the respective
year.
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Figure 9.6: Impact of the index selectivity on the harvest rate rule for pollack for the one-way
fishing history. The projections (left) show the first 10 years, the summary boxplots (right) the
full 50-year projections.

than for faster-growing species. This relationship can be illustrated with the von Bertalanffy

k parameter of the stocks (Figure 9.7b). Pearson correlation coefficients indicated a negative

correlation between the multipliers where the catch was maximised (ρ ≤ −0.89, p ≤ 7.5×10−11)

and between the maximum catch and k (ρ ≤ −0.86, p ≤ 3.5 × 10−9).
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Figure 9.7: Impact of a harvest rate multiplier on the performance of the harvest rate rule. (a)
shows the summary statistics for four example stocks; anglerfish (ang3), pollack (pol), brill (bll)
and sandeel (san). The location of the maximum catch (second row) is indicated by small points
and vertical lines corresponding to the multiplier. (b) shows the correlation between the location
of the maximum catch in terms of the multiplier in (a) and the von Bertalanffy k, and between
the maximum catch level of (a) and k, for all 29 simulated stocks for three fishing histories.

The results for the one-way and roller-coaster fishing histories were very similar, which was

also the case for the previous sensitivity analysis. Therefore, the following sections only consider

the one-way and random fishing histories.

9.5.4 Parameters of the harvest rate rule

When considering the impact of the individual parameters of the harvest rate rule for pollack,

the time lag (n0) and interval (v) had negligible influence, while the index trigger buffer (w) and

index range (n1) led to small improvements (Figure 9.8). Although the uncertainty caps (ul,

uu) had little or no influence on their own when considering a risk limit in the fitness function

(ϕMSY-PA; Figure 9.8b), they had a stronger impact (either individually or together) when a risk

limit was not included (ϕMSY; Figure 9.8a). The use of a multiplier (x) had a strong impact on

its own in all cases, apart from the one-way fishing history when a risk limit was not included.

The improvement was generally better when the optimisation was conducted for several

parameters. The addition of uncertainty caps led to no or minor performance improvement

compared to the optimisation with all parameters excluding the uncertainty caps and the op-
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Figure 9.8: Fitness values as a proxy for management performance for the harvest rate rule when
including single or combinations of the rule’s parameters into the optimisation with the genetic
algorithm for pollack. Shown are optimisation for the fitness function without a risk limit (a)
and with a risk limit (b). The following parameter combinations were tested: multiplier (x),
time lag (n0), index range (n1), index trigger buffer (w), interval (v), upper cap (uu), lower cap
(ul), both caps (uu, ul), all parameters without the caps (x, n0, n1, w, v), all parameters (x, n0,
n1, w, v, uu, ul), multiplier with conditional caps (x, uu = 1.2, ul = 0.7), and all parameters with
conditional caps (x, n0, n1, w, v, uu = 1.2, ul = 0.7). Shorter bars indicate better performance.
In (b), optimisations where risk exceeds 5% are coloured in red, and bars are cut off on the left
because fitness values are < −5 due to the risk penalty. The split of the fitness function into its
elements is illustrated in Figure E.6 in Appendix E.

timisation selected either no or very wide caps (Table E.1 in Appendix E). This is an important

result for the industry, which prizes more stable catch advice (compare “all” and “all (cond.

cap)” to “all without caps”). The default harvest rate resulted in a risk above 5% for the ran-

dom fishing history. In the optimisation scenarios where the fitness function included the risk

limit (ϕMSY-PA; Figure 9.8b), this risk could only be reduced sufficiently when the multiplier

was included, either on its own, or in combination with other parameters.

9.5.5 Optimisation for all stocks

The magnitude of the fitness improvement was stock-specific. Figure 9.9 shows the optimisation

results for all stocks (including the conditional uncertainty cap) and a comparison to the results

of Fischer et al. (2021a, 2021b, see Chapters 7 and 8). The inclusion of all parameters in the

optimisation of the harvest rate rule resulted only in marginal improvements compared to the

optimisation with the multiplier.
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Figure 9.9: Fitness (ϕMSY-PA) as a measure of management performance of the harvest rate
rule, achieved through optimisation with the genetic algorithm and a comparison with other
management options. Non-precautionary management (risk exceeds 5%) is highlighted in red.
Shown are a “zero-fishing” option (a), the 2 over 3 rule (b, from Fischer et al., 2021a, Chapter
7), the rfb rule (c-e, from Fischer et al., 2021b, Chapter 8) and the harvest rate rule (f-h). For
the rfb and harvest rate rules, three options are shown; the default rules (c, f, not optimised),
optimisation with a multiplier (d, g), and optimisations where all parameters are included (e, h).
For c-h a conditional uncertainty cap (+20%, -30%) is included. Optimised parameterisations
of the harvest rate rule are available from Table E.1 in Appendix E.
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Fitness values were highest for the one-way fishing history (stronger but narrow initial deple-

tion) compared to the random fishing history (large spread of initial depletion). In the one-way

history, fitness appeared to be correlated to individual growth with the best management per-

formance for the slowest-growing species. In the random history, management performance

seemed best for species in the middle of the range tested, with a clear deterioration (i.e. poorer

management performance and increased risk) for the faster-growing species, but also the slowest-

growing species. For example, for the slowest growing stock (blackbellied angler, ang3), when

the optimisation was performed only with a multiplier in the random fishing history, no mul-

tiplier could reduce risk to 5% and the optimised solution was not precautionary (Figure 9.9).

However, this was caused by the restriction of the conditional uncertainty cap, and if the cap

was removed, a precautionary solution is possible (see Figure E.7 in Appendix E). Figure 9.10

visualises the optimised multipliers (option “(g) hr: mult” in Figure 9.9).
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Figure 9.10: Optimised multiplier values of the harvest rate for all 29 stocks. The values shown
correspond to option “(g) hr: mult” in Figure 9.9 and are sorted by von Bertalanffy k. Multipliers
for the same stocks are connected with vertical grey lines. The dashed vertical lines indicate
the area 0.32 year−1 ≤ k < 0.45 year−1, which is the area for which ICES suggests considering
a harvest rate approach (ICES, 2020a, 2022b).

The harvest rate rule always outperformed the corresponding rfb rule (apart from sandeel for

the default configuration), although it could not always provide precautionary management for

the fastest-growing species for the fully optimised configuration in both fishing histories (Figure

9.9).
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9.6 Discussion

The key message from this chapter is that the application of harvest rates through a biomass

index is a suitable method for the management of moderately data-limited fisheries. However,

this requires first finding a harvest rate level corresponding to the desired management objectives,

for example, with empirical data. Simple modifications of a harvest rate rule, such as including

a multiplier, can be sufficient to meet these objectives.

In the present work, uncertainty was addressed by simulating many species, conducting a

sensitivity analysis, and including alternative historical fishing histories. In the one-way fishing

history, the initial stock status was narrow but strongly depleted. This condition allowed the

exploration of a recovery phase. The alternative random fishing history offered a wide spread

of depletion levels. This alternative history might be regarded as a more favourable starting

state; however, it proved rather challenging because both MSY and precautionary principles

were needed, i.e. a management procedure needed to limit risk (avoid low stock size) and de-

liver good long-term yields. The results indicated that the desired harvest rate parameterisation

can differ substantially between fishing histories, even when implemented over a long time. Con-

sequently, caution is recommended when applying a harvest rate rule generically and considering

exploitation information and conducting stock-specific analyses is encouraged.

The quantities explored in the sensitivity analyses cover essentially different elements of the

simulation, and the impact of specific quantities has different management implications. For

example, recruitment variability is a proxy for process error which is given by the underlying

population dynamics—this is something we have to live with. On the other hand, observation

uncertainty is an observation error and could be reduced through better sampling, while uncer-

tainty about steepness can be dealt with by building rules robust to it, or conducting further

research to reduce uncertainty. Larger observation uncertainty degraded management perform-

ance (reduced stock size, higher risk of falling below the biomass limit, and reduced catch) and

could correspond to a more severely data-limited situation. Consequently, a more conservative

harvest rate would need to be used to avoid exceeding risk limits in such a situation.

The harvest rate principle is straightforward and, crucially, does not rely on knowledge

about the absolute size of a fish stock, such as through the use of a stock assessment or an

estimate of the index catchability, and can instead be used on a relative basis. The challenge is

setting a harvest rate target corresponding to the desired management objectives. The proposal
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of using empirical data (mean catch length) appeared to work well to inform on historical

exploitation. Nevertheless, this is just one option, and other methods can be considered, e.g.

simple biomass models. For some stocks, acoustic surveys might exist, providing an estimate

of absolute biomass, making the application of a harvest rate strategy simpler because absolute

management thresholds could be set.

If a target level is set too low, this will lead to lighter exploitation than expected, but

conversely, if the target harvest rate is too high, this quickly leads to overfishing. Therefore,

setting target harvest rates should be considered with utmost care. This is particularly important

for cases when the target is set based on historical observations. For example, if overfishing has

occurred during the entire historical period for which data are available, an appropriate reference

that does not lead to overfishing is unlikely to be found. On the other hand, if a stock has only

been lightly exploited, selecting a target value does not cause issues for stock conservation but

some yield might be forfeited.

A crucial assumption in implementing a relative harvest rate strategy is that the biomass

index is an adequate measure of the stock biomass and captures trends. The absolute scale

of the index is not important because the harvest rate is defined relative to the index. This

means that a systematic bias in either catch or index will not affect management as long as the

bias does not change over time. When exploring different index selectivities, this had negligible

long-term impacts on the management performance of the harvest rate rule. This outcome

was not surprising because the target harvest rate (defined by reference years and not index

values) was scaled accordingly when an alternative index was used. However, this requires a

standardised index (e.g. from a scientific survey or a standardised index of commercial catch

per unit effort). Any temporal changes to the index (or fishery) selectivity or survey design are

likely to negatively impact fisheries management because translating the relative target harvest

rate with the index into a catch value does not return the correct absolute scale. Consequently,

the proposed harvest rate rule is only applicable in cases where a standardised index exists and

continues into the future.

The application and optimisation of the harvest rate rule in the generic context was not

successful for the few fastest-growing species. Such species mainly include short-lived species,

small pelagics, or fish with otherwise very high individual growth rates. Modelling such popu-

lations can be complex, but it is feasible given sufficient considerations (Siple et al., 2021). The

fast dynamics (boom and bust; de Moor et al., 2011) might warrant alternative modelling ap-
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proaches where sub-annual dynamics are explicitly considered. Consequently, more case-specific

models and alternative management procedures, such as escapement strategies, might be useful

to consider. Consequently, the following chapter (Chapter 10) explores an alternative model-

ling approach where seasonal dynamics and their impact on fisheries management are explicitly

considered.

The new guidelines of the ICES data-limited methods framework (ICES, 2022b) recommend

the empirical rfb rule, for which new catch advice is derived by adjusting the previous advice by

the trend of a biomass index, the mean of length of fish in the catch and a biomass safeguard.

This rule is restricted to species with slow to medium individual growth (von Bertalanffy k <

0.32 year−1) based on the outcomes of the studies presented in Chapters 6, 7, and 8. The rfb rule

appears to struggle with the rapid population dynamics of faster-growing species and cannot

provide long-term sustainable management unless the catch is reduced to very low levels. ICES

(2022b) already suggested a harvest rate rule for faster-growing species (0.32 year−1 ≤ k <

0.45 year−1) with a generic precautionary multiplier of x = 0.5 based on preliminary analyses

on a few faster-growing stocks as part of the study leading to the present chapter.

Furthermore, the comparison of the harvest rate rule to the rfb rule (Figure 9.9) showed

that, when optimised, the harvest rate rule appears to outperform the rfb rule, with higher

catches while offering the same level of precaution. The biggest improvement in the harvest

rate rule’s performance was by introducing a multiplier. In most cases, introducing more para-

meters led to only minor further improvements, but came at the cost of making the rule much

more complex. Nevertheless, the challenge of setting a multiplier value remained, as illustrated

in Figure 9.10, where the multiplier levels for the same stocks depend on the fishing history,

although a generic precautionary multiplier of x = 0.5 appears precautionary for all stocks with

k < 0.45 year−1. This precautionary value might forfeit some of the yields for slower-growing

species, but this could be ameliorated with case-specific simulations. Such case-specific analyses

could also explore management trade-offs in more detail, ideally with stakeholder engagement.

9.7 Conclusion

In conclusion, it is recommended that harvest-rate-based management be considered for moder-

ately data-limited fisheries management. Developing a generic one-size-fits-all parameterisation

for a relative harvest rate rule is challenging; therefore, case-specific simulations may be needed.
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A key benefit is that applying a harvest rate strategy, once set up, requires few data apart from

an index, and is, therefore, suitable for many moderately data-limited stocks. Nevertheless,

continued monitoring of stock status and exploitation is suggested to ensure the harvest rate

rule performs as expected.
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Chapter 10

Exploration of seasonal modelling for

fast-growing fish stocks
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10.1 Abstract

Previous simulation testing of empirical (model-free) control rules for managing data-limited

fisheries showed that such rules did not work well for very fast-growing species, resulting in low

catches and high risks of stock depletion. This chapter was aimed at exploring possible reasons

for this outcome and options for creating more appropriate models for very fast-growing species.

Sandeel was used as a case study, and a seasonal operating model created based on life-history

parameters to analyse the impact of sub-annual dynamics. This operating model could then be

used to evaluate management principles in a management strategy evaluation. Simulation results

indicated that sandeel exhibits strong sub-annual dynamics and operating model characteristics

depend on the time step of the simulation. Both harvest rate and escapement strategies appeared

to be suitable management strategies. However, the timing of management measures was crucial

and setting a catch advice more frequently led to higher long-term sustainable catches. This

study was exploratory; nevertheless, the outcomes are useful for managing fast-growing species

and future studies. Such species can be challenging to model appropriately, are likely less suitable

for using generically developed management strategies than slower-growing species, and benefit

from case-specific analyses.

10.2 Introduction

Previous simulation testing of empirical (model-free) control rules for the management of data-

limited fisheries showed that the performance of such control rules was linked to life history, par-

ticularly to the individual growth of exploited species (Chapters 6, 7, 8, and 9). This individual

growth could be defined through the von Bertalanffy growth parameter k, which determines how

fast an individual reaches its asymptotic size.

The trend-based rfb rule (Chapters 6, 7, and 8) showed a distinct turning point, where the

rule provided satisfactory management performance for species with slow to medium individual

growth (k ≤ 0.32 year−1). However, performance was very poor for faster-growing species

(k > 0.32 year−1), resulting in high depletion risks and low long-term catches. The depletion risk

could only be reduced to levels acceptable within a precautionary approach by reducing catches

to very low levels or even to zero. The application of a harvest rate rule led to improvements

for moderately fast-growing species (k ≤ 0.45 year−1), such as lemon sole, brill, or whiting,
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compared to the rfb rule (Chapter 9), but still showed poor performance for the very fast-

growing species (k > 0.45 year−1).

This outcome leaves faster-growing fish species, for which neither of the empirical control

rules from the generic simulation testing appeared appropriate. Such species included common,

very fast-growing, short-lived small pelagics, such as sprat, pilchard or anchovy, and larger

species, such as John Dory.

Considering the results of previous simulations where neither of the empirical control rules

provided satisfactory management performance, two reasons for this outcome might be con-

sidered. Either

(i) the control rules do not work for such species, for example, because of their fast stock

dynamics or because indicators such as length-based indices might not work well for fast-

growing species, as suggested by Kell et al. (2022), or

(ii) the operating models for these stocks, based on an annual time step, do not fully capture

their rapid stock dynamics.

Figure 10.1 shows the individual growth of one example fast-growing species (sandeel). This

figure illustrates that, initially, the length increases rapidly, and the asymptotic size is reached

after only a few years. This means that there are substantial changes in length from year to

year. Many biological parameters can be linked to size, such as individual weight, maturity or

natural mortality (Gislason et al., 2010), and large changes in size can lead to large changes in

these parameters. Additionally, the selectivity of fishing gears is usually size-dependent, which

means that the selection for a fish of the same age class can change substantially within a year.

In the previous modelling approaches, stocks were modelled with an annual time step starting

from age 1. This approach is appropriate for slower-growing species because of relatively small

changes from age to age. However, for fast-growing species, modelling sub-annual steps is likely

to be more appropriate.

Additionally, fast-growing species often have a different role in an ecosystem compared to

slower-growing species (Siple et al., 2021). For example, fast-growing species occupy a lower

trophic level, are often prey for other marine predators, are fished for purposes other than hu-

man consumption (e.g. aquaculture feed) and might exhibit schooling behaviour. Fast-growing

species often have a high natural mortality, particularly at young ages, which means that many

individuals die young, making the species short-lived. Furthermore, such stocks can have con-
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Figure 10.1: Individual growth (von Bertalanffy growth model) for sandeel.

siderable recruitment variability. Therefore, the stocks exhibit large fluctuations caused by

recruitment events because recruits comprise a considerable part of the population. This also

means that such stocks are more susceptible to environmental conditions and changes. These

boom and bust dynamics can be challenging for fisheries management (de Moor et al., 2011)

and it is difficult to distinguish signals from noise in observations.

This chapter explored how fast-growing species could be modelled more appropriately with

sub-annual time steps and their implications for management. For this purpose, the stock with

the highest individual growth (sandeel) was used as a case study to create a generic operating

model. Subsequently, harvest rate-based management was considered along with an alternative

based on an escapement strategy. This work does not aim to provide a definitive generic man-

agement solution for fast-growing species, but is intended to illustrate challenges when modelling

such species and possible ways forward for the future.

10.3 Methods

10.3.1 Operating model

The fastest-growing species (sandeel) from the 29 stocks considered previously (Chapter 5) was

selected as a case study. Operating models were created based on its life-history parameters

(Table 10.1) following the life-history relationships of the FLR (Kell et al., 2007) package FLife.

The resulting von Bertalanffy growth curve is shown in Figure 10.1. Age 0 was included in the

operating models to ensure capturing the seasonal dynamics of young fish.
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Table 10.1: Life-history parameters for the sandeel operating model. Shown are von Bertalanffy
growth parameters (L∞, k, t0), length at 50% maturity (L50), length-weight parameters (a, b),
and recruitment steepness (h). Values highlighted with * are previously defined default values
(Chapter 5) in the absence of stock-specific information.

L∞ [cm] k [year−1] t0 [years] L50 [cm] a b h

24 1.00 -0.1* 12 0.0049 2.783 0.75*

Two operating models with different time steps were created: (i) the annual operating model

used a single time step per year, as before, and (ii) the seasonal (quarterly) operating model

used four time steps per year. In the seasonal operating model, all biological and fishery para-

meters were based on the length in the corresponding season, but the functional forms were

kept the same as previously described for the annual models (see Chapter 5 for descriptions,

including equations). This applied to natural mortality (following Gislason et al., 2010), matur-

ity (logistic), weights at age (following the length-weight relationship), and fisheries selectivity

(double normal). Spawning was assumed as a single event at the beginning of the year. This

meant that fish were growing during the year, and consequently, natural mortality decreased

while maturity, weight and selectivity increased. Recruitment was modelled with a Beverton-

Holt stock-recruitment function.

Previous projections (Chapters 6, 7, 8, and 9) used FLR’s FLash package (https://github.

com/flr/FLash), which has limited seasonal modelling capabilities. Therefore, seasonal projec-

tions were conducted with the newer FLR package FLasher (https://github.com/flr/FLasher).

10.3.2 MSY estimation

The first step was determining maximum sustainable yield (MSY). FLR packages do not yet

offer internal routines for the estimation of MSY reference points for fully seasonal models.

Therefore, deterministic MSY reference points were estimated by projecting the two operating

models forward for 100 years with a constant fishing mortality (F ) and finding the F with the

highest long-term (last 10 years) catches.

10.3.3 Exploration of empirical management procedures

Two empirical management procedures were tested with the seasonal operating model:

• A harvest rate strategy, fishing a proportion of the stock:
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Cy,q = H By,q, (10.1)

where Cy,q is the catch in year y and season q, H the harvest rate (0 ≤ H ≤ 1), and By,q

the total biomass at the beginning of y and q.

• An escapement strategy, where an escapement biomass Bescapement is defined, and the

biomass above this value is fished:

Cy,q = max(By,q − Bescapement, 0). (10.2)

The work of this chapter is only exploratory and assumes that an unbiased estimate of total

biomass, By,q (or at least an estimate of known bias), is available, e.g. as would be obtained

from a hydroacoustic survey.

Deterministic evaluation

Firstly, both control rules were tested deterministically (without process or observation error)

with the seasonal operating model. This evaluation was done similarly to the MSY estimation

above with 100-year projections, and the harvest rate and escapement biomass maximising

long-term catch were determined. Optimum values were determined for quarterly, biannual and

annual catches, i.e. the catch target was set once and then kept constant for one, two or four

seasons before the control rules were applied again.

Stochastic simulations

Secondly, the optimised values of H or Bescapement from the deterministic evaluation were used

in a stochastic simulation with the seasonal operating model. For simplicity, these exploratory

simulations only considered stochasticity for the recruitment process with recruitment variability

σR = 0.6, the same value used for the generic simulations in previous chapters. Simulations were

only conducted for the optimised values of H or Bescapement from the deterministic evaluation

where catches were set annually. In the stochastic simulations, the catch was then also only set

once at the beginning of each year and equally distributed to the four seasons.

The two control rules rely on an estimate of the stock biomass. Therefore, the impact of

time lags was evaluated for time lags of 0, 1, ..., 8 seasons, where one season corresponds to a
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quarter of a year. A time lag of 0 meant that the biomass estimate was from the beginning of

the year for which the catch was set, a time lag of 1 season meant that the estimate was from

the beginning of the fourth season of the previous year, and a time lag of 8 corresponded to the

biomass from two years ago.

10.3.4 Data availability

Input data and software code for this study are available open access from GitHub at https:

//git.io/JDID1.

10.4 Results

10.4.1 MSY estimation

The estimation of MSY reference levels for the annual and seasonal sandeel operating models is

shown in Figure 10.2. The difference in recruitment levels is due to the high M values in the first

two quarters of the seasonal operating model (linked to length) compared to the annual value

used in the annual operating model. Figure 10.3 illustrates projections of the operating models.

Expectedly, the seasonal operating model shows intra-annual fluctuations of the biomass caused

by seasonal growth.
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Figure 10.2: Estimation of MSY for seasonal and annual sandeel operating models. Shown are
recruits, spawning stock biomass (SSB, i.e. mature proportion of the stock), total stock biomass
(TSB) and catch. Values correspond to long-term averages (median of last 10 years of a 100-year
constant F projection).
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10.4.2 Exploration of empirical management procedures

Deterministic evaluation

The exploration of the long-term deterministic harvest rates with the seasonal sandeel operating

model is displayed in Figure 10.4. Updating the advice more frequently (quarterly > biannual

> annual) led to higher long-term catches at the optimum harvest rate, and the optimum was

at a higher harvest rate.

Figure 10.5 illustrates the analysis for the escapement strategy. Similar to the harvest

rates, updating the advice more frequently resulted in higher long-term catch for the optimum

escapement biomass. However, the optimum escapement biomass for the annual and biannual

catch interval was nearly identical but higher for the seasonal catch interval.
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Figure 10.4: Deterministic exploration of harvest rates for the seasonal sandeel operating model.
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The deterministic equilibrium values of the optimised harvest rates and escapement strategy

(i.e. where the solid lines intersect with their corresponding dashed vertical lines in Figure 10.4

and Figure 10.5) are shown by quarter in Figure 10.6.
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Figure 10.6: Equilibrium values of the deterministic optimum harvest rate (top) and escapement
strategy (bottom) for sandeel. Shown is the equilibrium seasonal cycle over one year.

Stochastic simulations

The stochastic simulations of the optimum harvest rate and escapement strategy for annual

catches (as opposed to quarterly or biannual) are summarised in Figure 10.7. The optimum

escapement biomass led to a narrow range of SSB values just below BMSY, whereas the range

was larger for the optimum harvest rate. The timing of the biomass estimate had a strong

impact on the performance of the empirical control rules. A time lag of one season (0.25 years)

resulted in a lower catch and a higher stock size. However, a time lag of exactly one year caused

a near-collapse of the stock and led to very low stock size and catch.

10.5 Discussion

This chapter aimed to investigate options for conducting seasonal MSEs through exploratory

simulations. Although not exhaustive, the conclusions from this work can help steer future

efforts for exploring management options for fast-growing fish stocks.

There have been recent developments in the FLR package framework, and the projection

module FLasher now facilitates seasonal projections with any arbitrary number of time steps per
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Figure 10.7: Summary of stochastic simulations for the optimum escapement biomass (left) and
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a 25-year projection. The time lag (x-axis) refers to the time lag between the calculation of the
annual catch and the timing of the biomass estimate on which it is based.

year. However, seasonal simulations are considerably slower because several steps are required

per year, which increases computational complexity and makes analyses more time-consuming.

The seasonal operating model developed for sandeel was new, and therefore a comparison to

the previous annual modelling approach would be warranted. In the seasonal operating model,

all biological and fisheries parameters accounted for seasonal growth, and consequently differed

between seasons, whereas these were constant for the annual operating model. These changes

caused differences in the dynamics of the stock and how it responded to fishing, as can be seen

from Figure 10.2 and Figure 10.3. The change in SSB as a function of F is relatively similar

because both operating models were conditioned to have an unfished (virgin) SSB of around

the same absolute value. On the other hand, virgin recruitment differs substantially between

models despite having the same recruitment steepness. This is due to factors such as the natural

mortality of recruits, which is higher in the seasonal operating model. Furthermore, selection in

the fishery differs. In the annual operating model, fish of a certain age are subject to the same

selectivity throughout the year. In contrast, in the seasonal operating model, fish of the same
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age class are increasingly more likely to be selected as the year progresses due to individual

growth.

Two alternative empirical management procedures were explored; a harvest rate and an

escapement strategy. Both approaches might be considered demanding regarding their data

requirements because they rely on a recent biomass estimate. The International Council for

the Exploration of the Sea (ICES) recommends using an escapement strategy for data-rich

short-lived species (ICES, 2019a). However, this relies on the existence of an analytical stock

assessment. The recommended catch is then based on a short-term forecast in which a catch

is determined so that the risk of the stock falling below the limit reference point Blim does

not exceed 5% after fishing. For the exploration of the harvest rate and escapement strategy

for sandeel in this study, the control rules were applied empirically without running any stock

assessment or forecast and are therefore more suitable for data-limited stocks.

An escapement strategy could be considered compelling because the role of fast-growing

species in the ecosystem can be considered, for example, leaving enough prey to its natural

predators, which means it is a step towards ecosystem-based fisheries management (e.g. Bentley

et al., 2021).

One of the main conclusions is that the timing for the management of fast-growing species

is crucial, which applies both to the interval for which a catch is set as well as the time lag

on which management decisions are based. Setting the catch advice more frequently seemed

to improve management performance, and, ideally, the advice is updated more than once per

year. Doing this allows the extraction of higher long-term yields for such productive fisheries

resources. Furthermore, the timing of observations is very important because of seasonal growth

patterns influencing stock dynamics. For example, simulation results indicated that setting an

annual catch advice based on a biomass estimate from a suboptimal time of the year might be

detrimental to the stock and fishery. However, it would be possible to tune a control rule to

account for seasonal growth if there is a gap between the timing of the biomass estimate and the

application of the control rule. In addition, simulations showed that even fishing at the optimal

(MSY) harvest rate but with a time lag of just one year resulted in very poor performance,

leading to low stock size and consequently low long-term catch. This is because the stock was

strongly impacted by recruitment. The biomass estimate might be high in one year because of

a strong recruitment event, but after just one year, many recruits may have disappeared (due
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to high natural mortality for recruits, and fishing in the previous year) and are not available

anymore for the fishery.

The stochastic simulations in this chapter were exploratory and only included recruitment

variability, which means that considerations of uncertainty in these simulations were limited.

Including additional sources of uncertainty or a broader interpretation of uncertainty could have

led to different implications.

It appears difficult to define generic recommendations for sustainable management proced-

ures or harvest levels of fast-growing species, apart from advising a very low, highly precau-

tionary catch. The best way forward for managing such fisheries resources is likely to conduct

case-specific simulations. The present exploratory analyses proved that seasonal MSE simula-

tions are feasible. Such simulation models should be conditioned on a specific stock with as

much information as possible, such as growth patterns, time of spawning, and the fishery. Ad-

ditionally, this would allow the inclusion of suitable uncertainty estimates where relevant. This

approach is likely to determine appropriate management options leading to better management

performance with higher yields, while ensuring compliance with precautionary principles.

10.6 Conclusion

While exploratory, the seasonal simulations for sandeel allow drawing conclusions for the future

development of management procedures appropriate for data-limited fast-growing fish stocks.

Firstly, it is helpful to develop seasonal operating models for fast-growing species to account for

their seasonal dynamics and potentially seasonal fishery, which is not feasible with annual oper-

ating models. Both candidate management procedures (harvest rates and escapement strategy)

appeared promising, but this was conditional on their parameterisation and ensuring appro-

priate timing. In conclusion, it is recommended to conduct case-specific simulations and tune

candidate management procedures to fulfil the required management objectives.
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Chapter 11

Risk equivalence in data-limited and

data-rich fisheries management: an

example based on the ICES advice

framework1

1This chapter is based on a manuscript submitted to the journal Fish and Fisheries.
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11.1 Foreword

This is the last chapter before the conclusions. In the previous chapters, generic empirical

management procedures were developed. In this chapter, these management procedures are

tested for several case study stocks with case-specific simulations. The content of this chapter

is based on a manuscript submitted to the journal Fish and Fisheries:

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (n.d.). Risk equivalence

in data-limited and data-rich fisheries management: an example based on the ICES advice

framework (manuscript submitted to Fish and Fisheries)

11.2 Abstract

Fisheries management needs to ensure that resources are exploited sustainably and the risk of

depletion is at an acceptable level. However, often uncertainty about resource dynamics exists

and data availability may differ substantially between fish stocks. This situation can be ad-

dressed through tiered systems, where tiers represent different data limitations, and tier-specific

stock assessment methods are defined, aiming for risk equivalence across tiers. As case stud-

ies, three stocks of European plaice, Atlantic cod, and Atlantic herring were selected, where

advice is provided by the International Council for the Exploration of the Sea (ICES). A man-

agement strategy evaluation was conducted to compare risk equivalence between the data-rich

ICES MSY rule, based on a quantitative stock assessment, and the revised data-limited empir-

ical management procedures of the ICES advice framework. The simulations indicated that the

data-limited methods were precautionary and did not lead to a higher risk of depletion than

the data-rich methods. Although the catch based on generic data-limited methods was lower,

stock-specific optimisation improved management performance with catch levels comparable to

the data-rich method. Furthermore, the simulation indicated potential issues with the ICES

MSY rule’s management performance when setting management reference points suboptimally,

resulting in increased risk. It is concluded that the recent revisions of the ICES system expli-

citly account for risk equivalence for data-limited fisheries management and are a major step

forward. Finally, further consideration of simple empirical management procedures is supported,

irrespective of data limitations due to their ability to meet fisheries management objectives with

greater simplicity.
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11.3 Introduction

Assessing possible impacts of anthropogenic influences on ecosystems is important, and this is

often formalised with risk assessments, widely used in many fields of environmental management

(Burgman, 2005). The exploitation of marine living resources is no exception and has spawned

the management strategy evaluation approach (MSE; Smith, 1994), which is considered best

practice for the evaluation of the impact of management strategies (Punt et al., 2016). MSE

aims to simulate the resource dynamics (biological fish stocks) and the fishery exploiting it in

an operating model (OM), and the management system as a management procedure (MP) in a

feedback loop. Uncertainty about resource dynamics can be included by considering alternative

hypotheses in the form of alternative OMs because the underlying reality is unknown and can

only be inferred from observations (Kell et al., 2021). Candidate MPs are then simulation

tested and a selection can be made based on which MP best meets management objectives while

considering uncertainty.

Assessing risks requires a definition of what constitutes risk. Roux et al. (2022) define risk as

the probability of exceeding reference levels leading to potential adverse consequences (biological,

ecological, social, or economic). In fisheries management, risk is often defined as the probability

of the exploited resource being overfished (Dichmont et al., 2016) and failing to meet targets, i.e.

management objectives. Uncertainty in the understanding of processes is explicitly considered

in the precautionary approach to fisheries management (Garcia, 1996), which aims to reduce

the risk of adverse consequences. MSE can be used as a tool to identify where a reduction of

scientific uncertainty could improve fisheries management (Fromentin et al., 2014).

The availability of data and knowledge can differ substantially between fish stocks, requiring

the application of different methods to derive scientific management advice. Tiered systems,

which classify fish stocks into tiers or categories depending on the available data, have been

developed to account for this discrepancy. Such tiered systems are, for example, used in Australia

(Department of Agriculture and Water Resources, 2018), the United States of America (PFMC,

2014), and Europe (ICES, 2012b). The general aim of such frameworks is to provide more

precautionary advice when there are fewer data (i.e. more uncertainty), e.g. through the

inclusion of buffers depending on the stock category (Dichmont et al., 2016). This implies that

there is a benefit of improving data collection and knowledge because more data could increase

the yield.
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Ideally, tiered fisheries management frameworks ensure risk equivalence between categories,

i.e. in a situation with poor or limited data and consequently higher uncertainty, management

should not permit higher risks. Dichmont et al. (2016) reviewed the tier approaches of Australia’s

Southern and Eastern Scalefish and Shark Fishery, the US west coast groundfishery, the US

Alaskan crab fishery, and the European Union fisheries. They found that none of the systems

achieved complete risk equivalency, and only the Australian system explicitly aimed towards it.

Dichmont et al. (2017) then subjected the Australian system with its tiers to an MSE with a

full ecosystem model and found that risk equivalence was not achieved. However, Fulton et al.

(2016) noted that introducing buffers similar to the one applied on the US west coast could

move the Australian system closer to full risk equivalence between the tiers. Other studies

comparing methods among tiers exist, but these compared generic methods rather than specific

management frameworks (e.g. Carruthers et al., 2014; Geromont & Butterworth, 2015a)

The International Council for the Exploration of the Sea (ICES) provides catch advice for

fish stocks in the Northeast Atlantic (ICES, 2021a). Since 2012, ICES classified fish stocks into

six categories depending on available data and applicable methods (ICES, 2012b), from category

1 (most data-rich) to the most data-limited category 6.

Stocks in category 1 are usually assessed with age-structured stock assessments, and the catch

advice is based on a short-term forecast. In most cases, this advice is based on the ICES MSY

rule (ICES, 2021a), which is a harvest control rule aiming at the fishing mortality corresponding

to the maximum sustainable yield (MSY), FMSY, but with F reduced when the spawning stock

biomass (SSB) is estimated to be below a trigger value (MSYBtrigger). Guidelines specify how

these management reference points should be derived (ICES, 2021h), and this usually involves

a stochastic long-term simulation assuming stationarity (“EqSim” software; Simmonds et al.,

2022). EqSim is conditioned on the point estimates from a stock assessment and only includes

limited uncertainty considerations.

The 2012 ICES data-limited stock assessment framework (ICES, 2012b) is a collection of

methods for stocks in categories 2-6, i.e. for those without absolute estimates of biomass and

fishing mortality. Category 2 was originally meant for stocks with quantitative assessments,

which were considered to provide only relative estimates due to large uncertainty. For stocks

in categories 3–6, there is typically no stock assessment due to data limitations or because

assessment models do not meet acceptance criteria. For category 3 stocks, a survey or catch per

unit effort index exists and can indicate stock trends. The standard method for this category is
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a status quo catch rule, which adjusts the recently advised catch by the trend in a stock index,

typically a “2 over 3” rule, where the trend is defined as the average of the two most recent index

values divided by the average of the three preceding values. The remaining stocks are classified

as category 4 (stock with reliable catch data only), 5 (stocks with landings data only), and 6

(negligible bycatch stocks). According to the ICES stock assessment database (ICES, 2022a),

ICES provided advice for 179 stocks in 2021, of which 99, 6, 55, 1, 13, and 5 were in categories

1–6, respectively.

Although the 2012 ICES data-limited framework aimed to provide advice following a pre-

cautionary approach, this was actually never shown to be the case. Recently, there have been

developments to revise the ICES data-limited framework and draft guidelines were proposed in

2020 to overhaul the system for category 3 stocks (ICES, 2020a). Figure 11.1 illustrates the

revised framework. The first step is to check whether a surplus production model (e.g. SPiCT;

Pedersen & Berg, 2017) can be fit. If such a model fit meets acceptance criteria, the stock can

be upgraded to category 2 and a short-term forecast with a fractile rule (Mildenberger et al.,

2022), aiming at a fishing mortality below FMSY, is used to provide catch advice.

Category 1 (data-rich)
• ICES Advice basis: Short-

term forecast with ICES 
MSY rule (fish at FMSY)

Category 2 (data-limited)
• ICES Advice basis: Short-

term forecast with fractile
rule (fish below FMSY)

Category 3 (data-limited)
• ICES advice basis: Empirical 

(model-free) control rules
▪ hr rule, rfb rule

• Choice of rule and parameteri-
sation depends on life history

Accepted surplus 
production stock 

assessment model?

ICES fish stock

Catch and survey 
data with age 

structure?

Accepted age-
structured stock 

assessment model?

no

yes

Catch data and stock 
index without age 

structure?

more uncertainty / simpler methods

yes yes

no

no

Category 4, 5, 6
(data-limited and 

data-poor)
• Catch only methods

yes

no

Figure 11.1: Simplified illustration of the revised ICES advice framework following the revisions
for categories 2 and 3 proposed by ICES (2020a). The figure shows typical situations but
deviations exist, e.g. for short-lived species.

In the absence of quantitative stock assessments, empirical (model-free) MPs were developed

through testing with a generic MSE and tuning to achieve precautionary criteria for a wide range
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of life histories and uncertainties. One of the new empirical MPs is the “rfb rule” (developed in

Chapters 6, 7, and 8; see also Fischer et al., 2020; Fischer et al., 2021a, 2021b) which derives

advice by adjusting the previous catch advice by the trend from a biomass index, the catch

length data as a proxy for fishing pressure, and a biomass safeguard protecting against low

stock size. Another suggested MP is a harvest rate rule which sets catch advice by targeting

a relative harvest rate (catch divided by a biomass index, developed in Chapter 9). The rfb

rule was already applied to two stocks in 2021 (ICES, 2021m, 2021l), and a further rollout is

anticipated for 2022.

The aim of the study in this chapter was to compare the risks of data-limited category 3

methods with data-rich category 1 methods. Statements on the comparison of risk or other

management performance metrics for a specific stock are only useful if methods are compared

under equivalent conditions. Consequently, a simulation framework was developed that allows

MSE to be conducted for data-limited and data-rich MPs. Evaluations should include several life

histories, initial stock conditions, and sources of uncertainty. Consequently, three ICES stocks

were selected as case studies for which OMs could be generated.

The first case study stock was European plaice (Pleuronectes platessa, Pleuronectidae) in

the western English Channel (ICES, 2021k), a slow-growing flatfish. This stock was historically

treated as a category 1 stock, and the advice was based on the age-structured extended survivors

analysis (XSA; Shepherd, 1999), a computationally efficient version of a virtual population

analysis (VPA) with survey tuning. However, in 2015, this stock was downgraded to category 3

due to high assessment uncertainty (ICES, 2015b). Nevertheless, the assessment was retained,

and its SSB estimates were used as the index for the 2 over 3 rule. Since then, the data

situation of the stock has improved substantially, sampling levels are at or above levels seen for

other data-rich stocks, and this stock offers an opportunity to condition a case-specific MSE to

a data-limited stock.

The other two case studies were commercially important and well-researched category 1

stocks; Atlantic cod (Gadus morhua, Gadidae) in the North Sea, eastern English Channel, and

Skagerrak (ICES, 2021d), a demersal roundfish with medium individual growth, and finally,

autumn spawning Atlantic herring (Clupea harengus, Clupeidae) in the North Sea, Skagerrak,

Kattegat, and eastern English Channel (ICES, 2021f), a medium-sized fast-growing pelagic

species.
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The objectives of this study were to (i) conduct an MSE for three case study stocks and

evaluate both the new ICES data-limited approach (the generic empirical MPs developed in pre-

vious chapters) and the traditional ICES data-rich approach (the ICES MSY rule), (ii) compare

management performance of these approaches, particularly considering meeting management

objectives and risk equivalence, and (iii) explore the benefit of case-specific tuning of the generic

empirical MPs.

11.4 Methods

An MSE framework using the Fisheries Library in R (FLR; Kell et al., 2007) was developed to

evaluate data-rich and data-limited MPs.

11.4.1 Operating models

Age-structured stochastic operating models (OMs) were conditioned for three contrasting fish

stocks from the Northeast Atlantic (plaice, cod, herring, Table 11.1). OMs were based on the

model fits of the state-space stock assessment model (SAM; Nielsen & Berg, 2014), which es-

timates processes (stock numbers at age, recruitment, fishing mortality), observations (catch

numbers, survey indices), as well as uncertainties and uncertainty structures of estimated para-

meters. Uncertainty was introduced into the OMs by sampling from the variance-covariance

matrix of the SAM model fit, whose structure was defined by the specific model configuration,

and generating 1,000 different (but internally consistent) simulation replicates, each representing

one possible outcome. This approach of using SAM model fits was developed by an ICES MSE

workshop on North Sea stocks and full details of this approach are available from the workshop

report (WKNSMSE; ICES, 2019h). For cod and herring, OMs were based on the latest stock

assessments conducted by ICES working groups and accepted by ICES for advice purposes in

2021 (ICES, 2021d, 2021f). For plaice, the OM was based on an exploratory assessment from

ICES (2021k), with full catch data including discards. Although the OMs are conditioned on real

stock units, they might not exactly represent the ICES benchmarked assessments for these due

to small changes (Table 11.1), but the OMs are very similar to the accepted ICES assessments

(Figure 11.2).

Recruitment was modelled by fitting stock-recruitment models to historical SSB-recruitment

pairs. The choice and parameterisation of recruitment models followed the suggestions of ICES
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Table 11.1: The three baseline operating models.

Plaice Cod Herring
• Species European plaice

Pleuronectes platessa
Atlantic cod
Gadus morhua

Atlantic herring
Clupea harengus

• Stock unit western English
Channel

North Sea, eastern
English Channel, and
Skagerrak

North Sea, Skagerrak,
Kattegat, and eastern
English Channel

• Stock ID ple.27.7e cod.27.47d20 her.27.3a47d
• Last stock

assessment
2021 (ICES, 2021k) 2021 (ICES, 2021d) 2021 (ICES, 2021f)

Operating model specifications
• Time series full (1980-2020) full (1963-2021) full (1947-2021)
• Ages 2-10 1-6 0-8
• Stock

recruitment
model

Beverton-Holt,
fitted to full time
series,
with residual
auto-correlation
ρ = 0.6

hockey-stick,
fitted to 1998-2021
(following ICES,
2019h, 2021b, 2021p)

hockey-stick,
fitted to 2002-2021
and breakpoint fixed
to Blim (following
ICES, 2021g)

• Survey indices 2: UK-FSP Q3 (beam
trawl) ages 2-8;
UK-Q1SWBeam
(beam trawl) ages 2-9

3: IBTS Q1 (bottom
trawl) ages 1-5; IBTS
Q3 (bottom trawl)
ages 1-4; IBTS Q3
(bottom trawl) age 0

4: IBTS Q1 (bottom
trawl) age 1; IBTS Q1
(herring larva index)
age 0; IBTS Q3
(bottom trawl) ages
0-5; HERAS
(acoustic) ages 1-8

• Biomass
index

UK-FSP Q3 IBTS Q3 HERAS

• Length data
source

Commercial catch
sampling and
Q1SWBeam

IBTS Q1 and Q3 HERAS

• Resampling
period used in
projection

last 5 years last 5 years (ICES,
2019h, 2021b)

last 10 years (ICES,
2019h, 2021g)

• Deviation
from stock
assessment

used exploratory
assessment from ICES
(2021o)

removed maturity
estimation from model
and provided as input
(faster model,
negligible difference);
removed survey age
correlation
(computational
complexity reduced,
negligible difference)

removed LAI SSB
index (faster model,
negligible difference)
following ICES
(2019h)

expert groups which ICES uses to calculate ICES management reference points (see Table 11.1

for details). In the present study, variability in future recruitment values (process error) was
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Figure 11.2: Comparison of spawning stock biomass (SSB) and fishing mortality (F) of baseline
operating models (OMs) to ICES assessments. Shaded areas are 50% and 90% confidence
intervals of the OMs. Horizontal dashed lines indicate OM BMSY and horizontal dotted lines
Blim.

introduced by taking model log-residuals, fitting a kernel density smoother to residuals, and

sampling from this distribution (Figure 11.3). This process allowed a wider range of residuals

to be generated compared to bootstrapping residuals. Auto-correlation of future residuals was

included if auto-correlation was significant in historical residuals. The model fitting and sampling

were done independently for each simulation replicate.

OMs were prepared for a projection of 20 years for all stocks. Variability in biological para-

meters (weights at age, natural mortality, maturity, etc.) and fishery selectivity was modelled

by resampling from the historical period for each replicate (see Table 11.1). Process error was

included for recruitment (through recruitment residuals) and for older age classes with survival

and other process error structure estimated by SAM.

Observations were generated for all survey indices used in the conditioning of the OMs (Table

11.1). Biomass indices were created by multiplying survey index numbers at age with survey

weights and aggregating these. Uncertainty for index and catch observations was modelled based

on the SAM estimates of observation error and observation error structure (see ICES, 2019h,

for details). Catch length frequencies were derived by applying stochastic age-length keys to the

observed catch numbers at age.

OM MSY reference points were estimated using the MSE simulation framework (including

process error) and projecting forward for 100 years with constant F s. MSY was derived by
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Figure 11.3: Visualisation of recruitment modelling for plaice. Shown are the Beverton-Holt
recruitment model fit (solid black curve in a; points are stock-recruit pairs) and the distribution
of log residuals (bars in b). Residuals for the MSE projection are sampled from the kernel
density distribution (red curve in b).

maximising the long-term catch (median of the last 10 years). The biomass limit reference point

(Blim) is meant to represent the SSB below which recruitment is impaired (ICES, 2021h). Con-

sequently, Blim was set to the breakpoint of the hockey-stick model for cod and herring. This

approach was not applicable for the Beverton-Holt model used for plaice. As an alternative,

the principle used by ICES for determining management reference points (ICES, 2021h) was

followed, and the lowest observed SSB was selected. This value was then linked to the recruit-

ment model and corresponded to 77% of the unfished recruitment, similar to the 70% used for

the generic operating models in previous chapters (Chapters 5–9). The MSY estimates derived

from the baseline OMs through stochastic projections are summarised in Table 11.2.

Table 11.2: Reference points of the baseline operating models and comparison to ICES reference
points.

Operating model reference points ICES reference points
stock B0 [t] FMSY MSY [t] BMSY [t] Blim [t] FMSY MSY

Btrigger [t]
Blim [t]

Plaice 38,340 0.167 1,703 10,005 2,119 0.24 2,443 2,110
Cod 415,979 0.430 55,391 90,187 62,734 0.28 97,777 69,841
Herring 3,621,774 0.367 403,512 1,052,763 874,198 0.31 1,232,828 874,198

Using the stochastic OM projections to estimate reference points led to reference points

matching the structure and dynamics of these OMs. However, details adopted for projections
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may not exactly match those adopted by the ICES expert groups when calculating ICES man-

agement reference points. Therefore, there are differences between the baseline OM reference

points and ICES-derived management reference points (Table 11.2), as already shown by ICES

(2019h). For example, FMSY estimates for cod and herring were higher than their corresponding

ICES estimates.

A range of alternative OMs was created to cover different assumptions made in the condition

of the baseline OM so that the robustness of MPs could be evaluated (Table 11.3). These OMs

were conditioned individually following the processes described above and covered considerations

such as recruitment (failure, higher recruitment), natural mortality, or discards. Reference points

were estimated for each alternative OM.

Table 11.3: Alternative operating models.

Plaice Cod Herring
Recruitment

• R: failure:
recruitment failure
(2021-2025)

• R: no AC : without
recruitment residual
auto-correlation

• R: failure:
recruitment failure
(2021-2025)

• R: higher : higher
recruitment (model
fitted to 1988-2021)

• R: failure:
recruitment failure
(2021-2025)

• R: higher : higher
recruitment (model
fitted to 1947-2021)

Natural mor-
tality (M) • M: high: M + 50%

• M: low: M − 50%
• M: Gislason:

age-dependent M
(Gislason et al.,
2010)

• M: dens. dep.:
density dependent
M through
cannibalism (ICES,
2017c, 2019h)

• M: no migr.:
removed inflated M
for ages 3+
accounting for
migration

Catch
• Catch: no disc.:

assume 100%
discard survival

11.4.2 Management procedures

The tested MPs are detailed in Table 11.4, and included the data-rich (ICES category 1) MSY

rule (ICES, 2021h), the data-limited (ICES category 3) empirical 2 over 3 rule (ICES, 2012b),

237



the rfb rule (Fischer et al., 2020; Fischer et al., 2021a, 2021b, described in Chapters 6, 7, and

8), and the hr rule (ICES, 2020a, described in Chapter 9). The ICES MSY rule MP mimicked

the process conducted by ICES working groups, including a SAM assessment and a short-term

forecast. The ICES management reference points (Table 11.2) were used for this process and

not the OM-specific values. A slight deviation was done for herring because the ICES advice

is based on a deterministic multifleet short-term forecast following a single fleet SAM model.

For the MSE conducted here, this was simplified to a single fleet forecast because the aim was

to evaluate the performance of the MP for a fast-growing pelagic species and not to consider

individual fleet behaviour. The rfb and hr rules were tested for all stocks. The 2 over 3 rule was

only tested for plaice because this is the method currently used for producing ICES advice for

this stock (ICES, 2021k).

The inclusion of the ICES category 2 fractile rule (Mildenberger et al., 2022) into the study

was considered. However, this MP requires a surplus production model and the suggested SPiCT

model (Pedersen & Berg, 2017) has been repeatedly shown to fail to model the dynamics of the

plaice stock (ICES, 2021o). Furthermore, attempts to fit it to cod resulted in unacceptably high

uncertainty and for both cod and herring acceptance criteria were not met (see Appendix F for

details).

Table 11.4: Evaluated management procedures (MPs).

MP Equation and description Reference
data-rich MPs

ICES
MSY
rule

Fy+1 = Ftarget min (1, By+1/Btrigger)
where Fy+1 is the fishing mortality targeted in the advice year,
Ftarget and Btrigger the management target (FMSY) and trigger
(MSYBtrigger), respectively, defined by ICES, By+1 the SSB at
the beginning of the advice year.

ICES
(2021a)

data-limited MPs

238



Table 11.4: (continued)

MP Equation and description Reference
2 over 3
rule

Ay+1 = Ay r bPA
with the new catch advice Ay+1, previous catch advice Ay, biomass
index trend r, and precautionary buffer bPA:

r =
∑︁y−1

i=y−2(Ii/2)∑︁y−3
i=y−5(Ii/3)

bPA =

⎧⎪⎪⎨⎪⎪⎩
1, if both F ≤ FMSY & B ≥ 0.5BMSY, OR

if bPA = 0.8 within last two years
0.8 otherwise

where I is the biomass index, and F and B are estimated with a
proxy MSY method, such as length-based indicators or a surplus
production model.
The rule is applied every second year (v = 2). The change in catch
advice is limited to 20% through an uncertainty cap (uu = 1.2,
ul = 0.8).

ICES
(2012b)

2 over 3
rule with
XSA

Same as 2 over 3 rule above, except: the SSB estimates from XSA
are used as biomass index, the F and B evaluation is done with SSB
estimates relative to ICES management reference points (FMSY
and MSYBtrigger), and the rule is applied every year.

ICES
(2021o)

rfb rule Ay+1 = Ay r f b
with the new catch advice Ay+1, previous catch advice Ay, biomass
index trend r, fishing proxy f , and biomass safeguard b:

r =
(︄ ∑︁y−n0

i=y−n0−n1+1(Ii/n1)∑︁y−n0−n1
i=y−n0−n1−n2+1(Ii/n2)

)︄er

f =
(︂

L̄y−1
LF =M

)︂ef

x

b =
(︂
min

{︂
1,

Iy−n0
Itrigger

}︂)︂eb

where I is the biomass index, L̄ the mean catch length above length
of first capture Lc, LF =M an MSY proxy reference length, Itrigger
an index trigger value calculated from the lowest observed index
value Iloss via an index trigger buffer w (Itrigger = wIloss, default
w = 1.4), n0 the offset between last biomass index year and as-
sessment year (default n0 = 1), n1 and n2 the number of biomass
index years in the numerator and denominator of r (default n1 = 2,
n2 = 3), x a multiplier for scaling the advice (default x = 0.95 for
stocks with von Bertalanffy k < 0.2 year−1, x = 0.9 for stocks with
0.2 ≤ k < 0.32 year−1), and er, ef , eb exponents for weighting r,
f and b (default er = ef = eb = 1).
The default advice interval is biennial (v = 2) and changes in catch
advice are limited with an uncertainty cap to an increase of +20%
(uu = 1.2) and decrease of −30% (ul = 0.7) but the application of
the cap is conditional on Iy−n0 ≥ Itrigger.

Fischer
et al.
(2020)
and
Fischer
et al.
(2021a,
2021b),
ICES
(2020a)
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Table 11.4: (continued)

MP Equation and description Reference
hr rule Ay+1 = I H b

with new catch advice Ay+1, biomass index value I, target harvest
rate H, and biomass safeguard b:
I =

∑︁y−n0
i=y−n0−n1+1 (Ii/n1)

H = Cref/Iref x

b = min
(︂
1,

Iy−n0
Itrigger

)︂
where I is the biomass index, n0 the offset between last biomass
index year and assessment year (default n0 = 1), n1 the number of
biomass index years used in I, C the realised catch, Cref/Iref the
harvest rate from a reference period, x a multiplier for scaling H
(default x = 0.5), and Itrigger an index trigger value calculated from
the lowest observed index value Iloss via an index trigger buffer w
(Itrigger = wIloss, default w = 1.4).
The default advice interval is annual (v = 1) and changes in catch
advice are limited with an uncertainty cap to an increase of +20%
(uu = 1.2) and decrease of −30% (ul = 0.7) but the application of
the cap is conditional on Iy−n0 ≥ Itrigger.

ICES
(2020a)

11.4.3 Performance statistics

Management performance of the MPs was evaluated through three main metrics: stock size

(SSB relative to BMSY), catch (relative to MSY), and depletion risk (called Blim risk, PBlim ,

proportion of simulation replicates for which the stock is below the biomass limit reference

point Blim). These metrics were calculated for the long term (the last 10 years of the 20-year

projection).

11.4.4 Optimisation

The rfb and hr rules were optimised with a genetic algorithm following the approach developed

by Fischer et al. (2021a, 2021b, see Chapters 7, 8, and 9). This approach essentially mim-

ics evolution, and individuals (MP parameterisations) are subjected to natural variability in a

selective environment, favouring individuals with higher fitness (better management perform-

ance). In the generic simulations of Fischer et al. (2021b) (Chapter 8), the fitness was defined

with a fitness function aiming to move the stock towards MSY while keeping PBlim low. The

ICES precautionary approach requires an MP to deliver management that ensures PBlim ≤ 5%

(ICES, 2021a), otherwise management is considered non-precautionary. In the present analysis

for plaice, cod, and herring, the fitness function aimed to maximise long-term catch relative to
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MSY (Clt), but with a penalty if PBlim exceeded 5%, following the concept adopted by ICES for

case-specific MSEs (e.g. ICES, 2019h, 2020c):

ϕ = Clt − 1
1 + e−(PBlim −0.06)500

(11.1)

The genetic algorithm was set up with a population size of 1,000 individuals. Variability was

introduced through two genetic operators, crossover with p = 0.8 and mutation with p = 0.1,

as well as elitism with p = 0.05 (Fischer et al., 2021a). Convergence of the optimisation was

achieved when either a maximum of 100 generations was reached or no further improvement

within 10 generations.

This optimisation was conducted first with the multiplier x (Table 11.4) and then with all

MP parameters (n0, n1, n2, er, ef , eb, x, v for the rfb rule, n0, n1, w, x, v for the hr rule) for

all three stocks and the baseline OMs. The conditional uncertainty caps restricting changes in

catch advice were kept fixed at +20% and −30% following the considerations of Fischer et al.

(2020), Fischer et al. (2021b, Chapters 6 and 8) and ICES (2020a) because this is often requested

by the fishing industry and can restrict large changes due to noisy data.

The optimisation was conducted with the baseline OMs for the three stocks (plaice, cod, and

herring). The optimised parameterisations were then subjected to the alternative OMs.

11.4.5 Data and software

The results of this study are fully reproducible and input data, software code, and summarised

results as presented in this chapter were made open source and are available from GitHub at

https://github.com/shfischer/MSE_risk_comparison.

11.5 Results

11.5.1 Management procedures in the baseline operating model

Figure 11.4 shows a comparison of the management performance of all tested MPs. The corres-

ponding stock summary projections are shown in Figure 11.5.

The ICES MSY rule induced non-precautionary long-term management for all three stocks,

but catch and SSB were close to their MSY reference values for cod and herring. For plaice,

using the ICES MSY rule led to a long-term PBlim of 39.8%, and the SSB remained well below

BMSY. For plaice, this outcome was because the ICES management reference point target FMSY
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Figure 11.4: Summary statistics of all tested management procedures for all three stocks under
their respective baseline operating models. Management procedures are colour-coded (2 over
3 rule in grey, rfb rule in blue, hr rule in red, and ICES MSY rule in yellow). For the rfb
and hr rule, three options are shown: the generic parameterisations (“generic”, light shading),
the parameterisation obtained by optimising with a multiplier (“multiplier”, medium shading),
and the optimised parameterisation with all parameters (“all”, dark shading). The risk is the
maximum annual risk over the last 10 years, with the distribution of annual values shown inside
the bars, catch and SSB show the distribution of the long-term (last 10 years), and the fitness
is a single value defined by Equation (11.1), where larger (more positive) values indicate better
management performance.
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(MSY, BMSY) and the dotted lines the biomass limit reference value (Blim). The lines on the
right of the panels show the distribution in the last simulation year (2040).

was higher than the OM FMSY (Table 11.2), leading to overfishing, and worse performance

(lower catch, higher PBlim) than the optimised rfb and hr rules. For cod and herring, the

management target was lower than the OM FMSY (Table 11.2) and the ICES MSY rule did not

cause overfishing, on average. Nevertheless, the rule did not lead to precautionary management

because despite the SSB being above BMSY, the uncertainty in the simulation was large enough

to result in PBlim > 5%. It should be noted that the ICES MSY rule applied here used non-

tuned ICES management reference points, as is standard practice in ICES. If the ICES MSY

rule had been tuned, as was done for the empirical MPs, this might have improved management

performance.

For plaice, the 2 over 3 rule used with a biomass index led to a maximum PBlim of 13.4%, and

despite an increase in the median SSB over time, PBlim increased continuously due to increasing

uncertainty (Figure 11.5). When used in combination with the XSA assessment, the PBlim was

5.9%, with slightly higher catches and stock size.

The generic (non-optimised) rfb rule resulted in precautionary management with PBlim < 5%

for all stocks, but with relatively low catch and SSB generally above BMSY. The optimisation

of the rule purely with a multiplier substantially improved performance, with higher catches

and SSB trajectories closer to BMSY, and this improvement was larger when all control rule

parameters were included.

243



Similar to the rfb rule, the generic hr rule provided precautionary management for plaice

and herring with SSB overshooting BMSY, with the optimisation using the multiplier increasing

the catch, and with a further slight increase when including all control rule parameters. The

generic hr rule was not precautionary for cod with a PBlim of 11% because once the SSB started

to recover, catches increased quickly, reverting the trend and reducing SSB again. However,

the optimisation made the hr rule precautionary by reducing the harvest rate target in the

optimisation with the multiplier, or reducing the time lag for the optimisation with all parameters

(Table 11.5), while retaining a similar long-term catch level (Figure 11.4).

Table 11.5: Default and optimised parameterisations for the rfb and hr rule. “-” indicates the
default parameterisation, “mult” the optimisation with the multiplier and “all” the optimisation
with all parameters. “Generations” is the number of generations in the optimisation until
converge was achieved. “Improvement” is the improvement in the fitness relative to the default
parameterisation. For a definition of the control rule parameters, see Table 11.4. Italicised
values indicate values included in the optimisation.

Stock Optimi-
sation

Gener-
ations

Improve-
ment[%]

Control rule parameters

rfb rule n0 n1 n2 er ef eb v x uu ul

Plaice - - - 1 2 3 1 1 1 2 0.95 1.2 0.7
mult 1 52 1 2 3 1 1 1 2 1.16 1.2 0.7
all 11 73 0 5 4 1.7 1.7 1.9 2 1.65 1.2 0.7

Cod - - - 1 2 3 1 1 1 2 0.95 1.2 0.7
mult 1 221 1 2 3 1 1 1 2 1.73 1.2 0.7
all 13 339 0 4 3 0.1 1.3 0.4 4 1.06 1.2 0.7

Herring - - - 1 2 3 1 1 1 2 0.90 1.2 0.7
mult 1 10 1 2 3 1 1 1 2 0.93 1.2 0.7
all 18 20 0 2 3 1.2 1.5 1.4 3 0.94 1.2 0.7

hr rule n0 n1 w v x uu ul

Plaice - - - 1 1 1.4 1 0.50 1.2 0.7
mult 1 53 1 1 1.4 1 1.23 1.2 0.7
all 22 64 1 2 0.8 2 1.28 1.2 0.7

Cod - - - 1 1 1.4 1 0.50 1.2 0.7
mult 1 422 1 1 1.4 1 0.42 1.2 0.7
all 11 482 0 1 1.0 4 0.84 1.2 0.7

Herring - - - 1 1 1.4 1 0.50 1.2 0.7
mult 1 21 1 1 1.4 1 0.78 1.2 0.7
all 14 23 0 2 1.0 1 0.78 1.2 0.7

11.5.2 Robustness to alternative operating models

The robustness of the MPs to the alternative OMs is illustrated in Figure 11.6. The relative

performance of the MPs was similar between the OMs.

Different M assumptions for the plaice OM resulted mainly in shifts of all summary stat-

istics, with lower catch, SSB and risk in case of lower M , and vice versa in case of higher

or age-dependent M . Assuming discard survival had a minor influence on the empirical MPs
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Figure 11.6: Summary statistics of all tested management procedures for all stocks and all
alternative operating models. See Figure 11.4 for details on the presentation and Table 11.3 for
operating model definitions.

but avoided the poor performance of the ICES MSY rule. Turning off the recruitment auto-

correlation led to negligible differences.
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For cod, assuming density-dependent M due to cannibalism led to a higher PBlim for all MPs.

On the other hand, removing the migration adjusted M of older fish meant that the PBlim for all

MPs dropped below 5% because this meant that fewer older fish had died. Which in turn means

that fishing at the same F led to a higher SSB, representing a more productive stock scenario

(see Figure F.4 and Table F.1 in Appendix F). Similarly, assuming a higher recruitment regime

resulted in a lower PBlim and larger SSB for cod and herring.

Reduced recruitment at the beginning of the projection resulted in lower stock sizes and

reduced catches. The impact of this recruitment failure scenario on the stock is illustrated for

cod in Figure 11.7. The reduced recruitment impaired initial stock recovery, and the SSB started
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Figure 11.7: Impact of the recruitment failure alternative operating model on the management
procedures, illustrated for cod.

to decline after 2-3 years. The rfb rule appeared to struggle under these conditions, and the

catch advice was only reduced at the end of the recruitment failure period after the SSB reached

a very low level. Once the catch advice had been reduced to very low levels, the SSB started to

recover; however, the catch advice had already reached very low levels and stayed there until the

end of the projection. The hr rule coped better than the rfb rule and after the stock started to

recover, the catch increased again, but it took until the end of the projection until previously seen
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catch levels were reached. The ICES MSY rule recovered catches the fastest but this reduced

stock recovery and kept the risk high.

11.6 Discussion

The main aim of this study was to test data-limited empirical MPs (developed in previous

chapters) and compare their performance to data-rich methods to evaluate risk equivalence.

This study was conducted with three case study stocks. The key outcome was that while

the data-rich and data-limited approaches have the same theoretical management objectives

(maximise yield while restricting risk following the precautionary approach), in the simulation,

the precautionary element was only met for the data-limited empirical MPs. However, when

applied generically, the data-rich methods resulted in higher catches, although case-specific

tuning of the data-limited MPs could increase yield to a similar level.

The testing of MPs with MSE can be broadly divided into generic method testing and

case-specific evaluations. In generic method testing, MPs are tested and possibly refined across

a range of OMs (e.g. Wetzel & Punt, 2011; Geromont & Butterworth, 2015a; Jardim et al.,

2015; Carruthers et al., 2016; Mildenberger et al., 2022). While generic testing is useful for

screening methods and tuning generically to specific life histories, evaluations of management

performance for specific stocks and conditions are limited. This requires case-specific analyses

with OMs conditioned to the stock (e.g. Bergh & Butterworth, 1987; De Oliveira & Butterworth,

2004; Kell et al., 2005; Sharma et al., 2020). This study adopted a case-specific approach and

simulation tested generic methods developed in previous chapters to evaluate if the outcomes

from the generic testing are valid.

The state-space SAM model (Nielsen & Berg, 2014) allowed the rapid conditioning of OMs

for several stocks. SAM is increasingly used in Europe and could facilitate MSE development

for many stocks, and has already been used by ICES (2019h, 2020c) and Goto et al. (2022). In

many scientific disciplines, model validation is common (e.g. Jin et al., 2008; Balmaseda et al.,

1995; Weigel et al., 2008). In fisheries science, model validation of state-space models can be

difficult because validation requires that the system is observable and measurable (Hodges &

Dewar, 1992).

The ICES MSY rule is the main harvest control rule used for most data-rich stocks in the

Northeast Atlantic (ICES, 2021a). The principle of targeting FMSY and reducing this when a
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stock moves below a biomass trigger value has been widely adopted. Nevertheless, the ICES

MSY rule led to non-precautionary management for all three stocks tested in this study, and the

same was found previously for North Sea whiting and herring by ICES (2019h). This outcome

appears to be caused less by the formulation of the ICES MSY rule and more by how it is

operationalised.

The management reference points such as FMSY are estimated with stochastic long-term

projections (ICES, 2021h), and uncertainties, even when available from a stochastic stock as-

sessment, are largely ignored. Furthermore, there can be spurious assumptions in the estimation

of ICES management reference points. For example, natural mortality in the current North Sea

cod stock assessment is inflated (“corrected”) for ages 3+ to account for an assumed migration

of older fish out of the stock area, and might be better considered as a case of “retrospective pat-

tern hacking” so that the assessment passes acceptance criteria (ICES, 2021b). However, while

this correction is considered for the recent historical period, it is ignored in the MSY estimation

by ICES, leading to a considerable step change in the inputs used for the MSY calculations

compared to the recent historical period.

It should be noted that the ICES MSY rule’s parameters used in the MSE were not tuned

through MSE simulations and, instead, the values recommended by ICES were adopted. If these

parameters had been tuned, the management performance of the ICES MSY rule might have

been better than presented here. Future studies might consider a situation where both data-rich

and data-limited MPs are tuned.

The OMs were conditioned on SAM, which implies that SAM describes nature almost per-

fectly. This could be considered an unfair advantage for the MP based on SAM. Nevertheless,

the performance of this MP was only moderate, and it resulted in high risks. Potentially, this

could mean that the performance might be further impaired when reality was not as simple as

implied by SAM and when more realistic representations of uncertainty were to be considered

(Kell et al., 2006).

The outcomes of MSE exercises can be lost quickly in ICES. For example, North Sea cod,

saithe, and herring were included in an MSE evaluation in ICES (2019h), including recommend-

ations on management reference points. However, since then, management reference points for

these stocks have been revised with the standard ICES short-cut approach after the stock as-

sessments were updated in benchmark workshops. Furthermore, the data-rich ICES MSY rule
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might not always be such a good choice for providing management advice, especially if the rule

has not been simulation tested.

Three data-limited MPs were tested, the 2 over 3 rule, the rfb rule, and the hr rule. The 2

over 3 rule performed worst for plaice, was not precautionary, and had the undesirable feature of

increasing risk over time. This outcome is not surprising because the 2 over 3 rule aims to adjust

the catch based on the stock trend but lacks a target. Currently, this rule is used for plaice,

but in combination with an XSA assessment. This MP performed slightly better but exceeded

the 5% risk limit of the ICES precautionary approach. Furthermore, both versions of the 2

over 3 rule were highly susceptible to the recruitment failure scenario, with PBlim above 90%.

Consequently, this study provides further reassurance to phase out the 2 over 3 rule because it

is not fit for purpose.

Generic (not tuned) parameterisations of the rfb and the hr rule resulted in long-term pre-

cautionary management, except for the hr rule for cod. However, this precaution was achieved

by reducing catch and stocks moving to high levels. Such a management approach might be

perceived as overly cautious, but is necessary in case of data limitations to ensure compliance

with the precautionary approach and follows the principle of a risk-equivalent framework where

better knowledge can reduce uncertainty and increase yield. In general, while the hr rule might

achieve higher yields and is less susceptible to adverse events such as recruitment failures, it is

crucially dependent on defining a target harvest rate appropriate for the stock. Here, the histor-

ical mean catch length was used to define a reference for the target harvest rate (see Chapter 9),

which might not be successful for every stock. Therefore, the hr rule may require more in-depth

analyses to ensure future management is precautionary.

In their generic evaluation of the rfb rule, Fischer et al. (2021b) concluded that the man-

agement performance of the rfb rule could be substantially improved through tuning, but this

would require case-specific analyses. This was done here for the rfb and the hr rule and three

case study stocks (plaice, cod, herring) using a genetic algorithm as an optimisation procedure.

Including only a multiplier improved the rules markedly and increased catches. Optimising over

more control rule parameters led to further improvements but came at the cost of much higher

complexity and made the management often more susceptible to different assumptions, as tested

with the alternative OMs. This is because the optimisation was only performed with the baseline

OM and alternative OMs were only considered for exploring the robustness of generic and op-

timised MPs. For additional precaution, a reference set, i.e. an ensemble of OMs to reflect a
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broader range of uncertainties, could be defined and deployed in the optimisation. However, the

process of deciding which OMs to include in a reference set can be time-consuming and is likely

infeasible to carry out for the dozens of fish stocks for which ICES provides advice. Additionally,

optimising over a large ensemble of OMs further increases computational complexity.

The definition of the objective function (or fitness function in the genetic algorithm) needs

to be carefully considered. Here, the objective was long-term sustainability, i.e. the initial simu-

lation period only indirectly influenced the optimisation objectives through stock dynamics, and

was not included in the objective function. This approach decoupled the initial conditions from

the optimisation, and this was, for example, useful for cod, which started below Blim, and could

therefore not possibly meet precautionary criteria. Furthermore, the optimisation considered the

long-term average catch (last 10 years of a 20-year projection), without considering trends or

variability. This meant, for example, that in the rfb rule’s optimisation with all parameters for

plaice, the catch was still increasing at the end of the simulation because this solution provided

the highest precautionary average catch. The incorporation of such performance statistics is

common practice in MSE. For example, the International Commission for the Conservation of

Atlantic Tunas (ICCAT, 2021) includes the depletion at the end of a 30-year projection as a

tuning target for candidate MPs.

When comparing the rfb and hr rule, the generic rfb rule appears to offer a more reliable

precautionary management option than the hr rule, but this comes at the cost of potentially low

catch for the sake of precaution. On the other hand, the hr rule, particularly if optimised, can

deliver higher yields but requires more considerations when choosing the target harvest rate, and

the generic parameterisation might not always provide a precautionary management solution, as

shown for cod. However, if more data are available and case-specific analyses can be conducted,

as was the case for the plaice stock, then the hr rule appears to provide excellent management

advice and has the potential to outperform much more complex options such as the ICES MSY

rule.

Current draft ICES guidelines recommend the generic application of the rfb rule for stocks

with slow to medium individual growth (von Bertalanffy growth parameter k < 0.32 year−1),

and the hr rule for stocks with faster individual growth (k < 0.45 year−1) but excluding very

fast-growing and short-lived species (ICES, 2020a). The study in this chapter supports this

recommendation, but goes beyond that by suggesting that both rules might be applied beyond

their generic limits, as shown here for herring, a fast-growing, but relatively long-lived pelagic
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species, for which both rules appeared suitable. However, applying the rules beyond their generic

limits should be accompanied by case-specific testing.

Risk equivalence can be considered a cornerstone of fisheries management frameworks and

ensures that different management approaches provide the same risk appetite. This means that

less certainty, for example, due to limited knowledge about a fish stock, should not lead to riskier

management decisions. Any statement of risk equivalence requires the definition of risk and an

acceptable risk limit. The precautionary approach to fisheries management (Garcia, 1996) aims

at reducing the risk of adverse consequences. The ICES interpretation of the precautionary

approach is to limit the risk of a stock falling below the biomass limit reference point to 5%

(ICES, 2021a). This explicit definition of risk facilitates the evaluation of risk equivalence.

Simulating different MPs in a common simulation framework allows a direct comparison and

statements about risk equivalence. While this was tested for management frameworks in regions

such as Australia (Fulton et al., 2016; Dichmont et al., 2017), it had not been done before for

ICES, apart from Geromont and Butterworth (2015b), who conducted a hindcast analysis and

concluded that simple but theoretical empirical rules can achieve similar performance to complex

assessments.

The ICES data-limited system has been subject to only limited development over the past 10

years, despite attempts to improve it, e.g. through a dedicated workshop series on data-limited

methods (ICES, 2012d). However, a revision of the ICES system has now started, and the

changes are substantial (ICES, 2020a). The new generic data-limited methods were designed

to meet the same precautionary criteria as used in data-rich considerations, which means they

explicitly consider risk equivalence, and this was confirmed with case-specific testing. This

approach follows the recommendations of Dichmont et al. (2016) that risk-equivalent frameworks

should be tested with MSE, ideally with case-specific analyses, but in their absence, generic

simulations can be used.

11.7 Conclusions and recommendations

1. The new empirical ICES methods for moderately data-limited fish stocks (ICES category

3) have undergone extensive simulation testing and review as part of this PhD project.

The methods’ ability to meet management objectives is further strengthened with the case

studies of this chapter. Consequently, the further rollout of the generic empirical rules
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in ICES scheduled for 2022 is endorsed. Furthermore, for stocks for which case-specific

analyses are possible, such as the plaice stock, this can be done to improve realised catch

without jeopardising precaution. The inclusion of risk equivalence in the ICES system is a

major step forward and moves the ICES data-limited framework on par with other parts

of the world, where this is already included.

2. More generally, it is recommended that risk equivalence be considered in any changes to an

advice framework to ensure that alternative management approaches or higher uncertainty

due to, for example, data limitations, do not compromise conservation. Additionally, ac-

counting for risk equivalence mandates the definition of an acceptable risk limit. Once such

a limit is set, a benefit is that alternative management strategies can be selected based on,

for example, socio-economic criteria, as long as they are risk-equivalent. The approach of,

firstly, conducting generic MP testing to identify and tune suitable methods and, secondly,

conducting case-specific simulations to confirm the performance of the generic methods,

appeared to work well. Therefore, this approach could be adopted more widely, both for

revisions of data-rich and data-limited fisheries management.

3. Finally, this study promotes using simple empirical strategies for managing fisheries re-

sources, independently of their data limitations, as pursuing the best assessment ap-

proach will not always be necessary. Complex procedures, including analytical stock

assessments and projections, might appear tempting but can easily lead to issues (e.g.

non-precautionary management) when implemented suboptimally, or target and reference

levels are set incorrectly. Such issues could be avoided by conducting full MSEs, including

robustness tests. On the other hand, empirical methods have major benefits such as being

simpler to test and optimise in simulation studies, easier to apply to data, potentially

cheaper due to reduced frequency of data requirements, can reach equivalent catch levels,

and are more straightforward to communicate to stakeholders and managers than much

more complex approaches. This does not mean that stock assessments should be dropped

entirely because they are still required for assessing stock status and conditioning OMs for

simulations, but there might be a reduced need to do this annually.

252



Chapter 12

Conclusions
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12.1 Introduction

This chapter concludes the study by summarising the outcomes concerning the objectives set

out in the introduction chapter, discussing the output and impact of the work, and indicating

potential gaps and how they could be addressed in future research.

12.2 Overview

The flowchart in Figure 12.1 summarises the academic journey of this PhD project. The pro-

ject started with the broad aim to improve fisheries management for data-limited fish stocks

and settled on using management strategy evaluation (MSE) as a means to develop and test

empirical management procedures (MPs). Simulations of the currently applied method by the

International Council for the Exploration of the Sea (ICES) to moderately data-limited stocks

revealed insufficiencies, and the method neither follows principles of the precautionary approach

nor offers long-term sustainability. Therefore, an alternative MP (the rfb rule) was developed

and offered better management performance for fish stocks with slow to medium individual

growth. Furthermore, the rule’s management performance could be improved by tuning it to-

wards specific management objectives, including limiting the risk of stock depletion. The rfb

rule appeared inappropriate for faster-growing species due to unacceptably high depletion risks.

However, an alternative (the hr rule) was found to perform better for faster-growing species,

apart from the fastest-growing short-lived species. Such short-lived species are a challenge for

fisheries management, particularly in data-limited situations, and will likely require case-specific

studies. The development of the rfb and hr rules was based on generic simulations for a wide

range of life-history traits. Nevertheless, the conclusions were confirmed by more specific simula-

tions for a few case studies. These simulations revealed that the generically developed empirical

methods are risk equivalent to more data-rich management approaches.

12.3 Generic simulations and case studies

The general strategy for developing the empirical MPs (the rfb and hr rules) was to conduct

generic simulations covering a wide range of life-history traits. Such generic simulations might

attract criticism about the selection of scenarios and their realism. However, when data are too
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limited to conduct case-specific analyses, this can be the only feasible approach to develop and

quickly screen candidate MPs.

Nevertheless, the methods developed with generic simulations were later subjected to case-

specific simulations for three case study stocks, for which more realistic operating models could

be conditioned on complex stochastic stock assessment models. These analyses confirmed the

results of the generic simulations, i.e. that the empirical methods provide a precautionary

management option and are risk-equivalent to more complex data-rich approaches.

While model validation is notoriously difficult in fisheries science, the case-specific simulations

at least partially addressed this by confirming conclusions from generic analyses. However,

the case-specific models were conditioned on complex state-space stock assessment, and these

assessments themselves cannot be fully validated against reality. Consequently, these case-

specific simulations could be regarded as only a verification of the generic conclusions with a

different simulation model.

12.4 Management objectives

The evaluation of the management performance of MPs relies on the definition of management

objectives. Such management objectives are often mandated by national and international

legislation. ICES requires management advice to follow a precautionary approach (i.e. reduce

the risk of stock depletion to levels where productivity is impaired) and, if possible, also to aim

towards maximum sustainable yield (MSY; ICES, 2019a). The existence of concrete objectives

allows the evaluation of MPs, the development of generic MPs, as well as their optimisation

through optimisation routines, such as the genetic algorithm deployed here. One of the main

conclusions of this project is that relatively simple empirical MPs can achieve these management

objectives.

12.5 Uptake and impact

An important issue for any scientific analysis is the impact on policy and considerations for

implementation. The work conducted for this PhD project was not purely academic but has

already directly impacted the management of data-limited fisheries in Europe through ICES.

The main forum in ICES for the development and advancement of data-limited methods is the

WKLIFE workshop series (ICES, 2012d), where the work was presented and discussed (ICES,
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2017e, 2018c, 2019c, 2020a), and was a major contributor to the success of these workshops.

Furthermore, credibility for the approaches and conclusions was achieved through review within

WKLIFE and the independent peer-review associated with publications in scientific journals

(Fischer et al., 2020; Fischer et al., 2021a, 2021b).

WKLIFE drafted guidelines for a data-limited advice framework for category 3 stocks (Annex

3 of ICES, 2020a), intended to replace the previous framework from 2012 (ICES, 2012b). This

framework is illustrated in Figure 12.2. Essentially, the approach is first to explore if a surplus

production model can be used to model stock dynamics. If such a model is successful, the

stock will be upgraded to the less data-limited category 2. However, in many cases, using an

assessment model will not be possible due to issues such as model convergence, lack of contrast

in data, violation of model assumptions, or insufficient data, and stocks will remain in category

3. For these stocks, with the exception of short-lived species, the empirical methods developed

during this PhD project will be applied (Figure 12.2).

The draft framework was already applied in 2021 to category 3 stocks which underwent a

benchmark (a process where data and assessment methods are reviewed and updated). This

included two stocks to which the rfb rule was applied (Figure 12.3) and meant that for these

two stocks, the official ICES recommendations on catches given to clients (the European Union

and the United Kingdom) were based on the rfb rule:

• European plaice (Pleuronectes platessa) in the southern Celtic Sea and southwest of Ireland

(ICES division 27.7hjk; ICES, 2021m):

ICES advises that when the MSY approach is applied, catches in 2022 should be no more

than 114 tonnes.

• Common sole (Solea solea) in the Cantabrian Sea and Atlantic Iberian waters (ICES

divisions 27.8c and 27.9a; ICES, 2021l):

ICES advises that when MSY approach is applied, catches should be no more than 284

tonnes for each of the years 2022 and 2023.

The exploitation of the plaice stock is shared between the United Kingdom and the European

Union’s member states. The total allowable catch (TAC) was set according to the ICES recom-

mendation (114t for 2022) after bilateral negotiations (European Commission, 2022b). For sole,

the TAC area does not match the stock unit for which ICES gives advice, and the TAC was set
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Figure 12.3: Map of where the empirical methods were applied (left) or are considered (right).

slightly higher than the ICES recommendation (320t instead of 284t; European Commission,

2022a). This means the rfb rule not only led to scientific advice but also directly impacted

policy.

Late in 2021, the ICES advisory committee decided to continue the rollout of the new

framework and that this should be applied to all category 3 data-limited stocks for which new

advice is scheduled in 2022. Consequently, the empirical methods developed as part of this

PhD project are likely to become the standard methods in ICES to provide scientific catch

recommendations for category 3 stocks apart from short-lived species.

Due to disruptions in early 2022, ICES adopts a flexible approach where the application

of the new methods is encouraged. However, some stocks might require additional analyses or

benchmarks and the application of the methods can be delayed if necessary. Coinciding with

the submission of this PhD thesis, the annual meetings of ICES assessment working groups

have started, and there are positive signs of the new methods being used. Furthermore, due to

possible time constraints in 2022, the deployment of the empirical methods (developed as part

of this PhD project) is being prioritised over ambitions to upgrade stocks to less data-limited

categories that include the use of model-based approaches, because empirical methods are easier

and quicker to implement compared to time and resource-intensive modelling approaches. This

means that the empirical methods could be applied for up to 45 candidate stocks in 2022

(personal communication with ICES professional officers), including some widely distributed

stocks, and these cover the entire Northeast Atlantic (FAO fishing area 27, Figure 12.3).

For short-lived species that were not directly suitable for management using the rules de-

veloped in this PhD project, there is still some influence from the research reported here. For
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example, the advice for English Channel sprat in 2021 was based on a harvest rate rule (ICES

division 27.7de; ICES, 2021n), and the target harvest rate was estimated with a case-specific

MSE (ICES, 2021j) based on the MSE framework developed for the rfb and hr rules.

In conclusion, the overarching goal of this PhD project to revise the data-limited framework

used by ICES has been achieved, and the implementation of the new methods has started. The

new methods are not perfect but can be considered a major step towards providing fisheries ad-

vice that explicitly follows required management objectives, such as the precautionary approach,

with the option to move towards MSY if data permit.

12.6 Importance and scientific novelty

The work of this PhD project addresses the important issue of delivering and improving scientific-

ally sound management advice for data-limited fisheries resources. National and international

requirements demand that fisheries management follows predefined management objectives, but

current management practices do not always ensure this. In the Northeast Atlantic alone, there

are several dozen fish stocks that ICES classifies as data-limited category 3 and the fisheries

management for these stocks can benefit from the methods developed in this PhD project. Fur-

thermore, the implementation of these methods has already begun in 2021 and will expand in

2022. The approach adopted by this PhD project is novel by (1) the systematic articulation of

management objectives in quantitative models, (2) explicitly addressing risk, (3) the application

of genetic algorithms for the optimisation of fisheries management approaches, (4) developing

a generic approach to develop management procedures applicable to many fish stocks, and (5)

demonstrating a feasible validation procedure using better-known stocks.

12.7 Gaps and future directions

While comprehensive, the work of this project is far from complete. A plethora of challenges

remain for data-limited fisheries management. The work was focused on moderately data-limited

fish stocks (ICES category 3). However, some stocks are more severely data-limited, and the

simple empirical control rules developed here cannot be applied. Future research should address

this gap and extend method development for cases in which, for example, no reliable stock index

exists. In the ICES system, this would be category 4 and below.
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The simulations were based on single-stock single-fleet models without systematic external

influences. However, many fish species are caught in mixed fisheries and interact with each

other and their environment. In more data-rich situations, complex simulation models covering

larger parts of the ecosystem and anthropogenic influences are sometimes used but this can

prove challenging in data-limited situations. Nevertheless, future studies into data-limited fish-

eries management could consider more holistic simulation approaches, including considerations

of multiple fleets, mixed fisheries, multispecies interactions, or even full ecosystem models. Fur-

thermore, the impacts of climate change on marine ecosystems, such as observed through regime

shifts or changes in species distributions due to global warming, should not be neglected.

This project focused on the management of fisheries resources. However, the principles

applied here, such as testing management options prior to implementation or their optimisation

to meet specific management objectives, apply to other areas of natural resource management

as well as to other scientific domains.

12.8 Closing remarks

If the past is any indication, methods guiding scientific advice are continuously changing and

advancing, often for the better, and this will not stop after the completion of this PhD project.

The methods developed in this thesis are far from perfect but at least are a step in the right

direction towards applying approaches that have been thoroughly simulation tested before their

implementation in reality. I hope the results of this PhD project helped to advance the field

of data-limited fisheries management towards ensuring long-term sustainable exploitation of

marine resources. Lastly, seeing the hard scientific work of several years being applied to guide

management decisions is hugely rewarding.
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Appendix A

Appendix to Chapter 3

A.1 Record of the literature search for the systematic review of

empirical management procedures

The literature search was conducted using the Web of Science citation database (https://

webofknowledge.com). All databases available on Web of Science (Web of Science Core Col-

lection, BIOSIS Citation Index, CABI: CAB Abstracts, KCI-Korean Journal Database, MED-

LINE, Russian Science Citation Index, SciELO Citation Index) were included and the search

spanned all available years (1950-2021).

The search was defined so that it included a wide range of synonyms for “empirical manage-

ment procedure” in the context of fisheries management:

(((((empirical) OR (empiric)) AND
(("catch rule") OR ("catch rules") OR
("control rule") OR ("control rules") OR
("management procedure") OR
("management procedures") OR
("harvest control rule") OR
("harvest control rules") OR
("management strategy") OR
("management strategies") OR
("harvest strategy") OR
("harvest strategies")

) AND
((fisheries management) OR
(fishery management)))))

The last update of this search was executed on 02/02/2021 and led to a total of 135 results.
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The search term was defined broadly to include as many results as possible, which included

empirical management procedures. Consequently, the results included papers from other sci-

entific fields and results where the term “empirical” was not related to “management procedures”.

The list was subsequently filtered by going through the results manually, first by reading the

abstract, and if no decision could be made, by going through the full document. This procedure

resulted in a list of 20 papers for inclusion in the review:

1. Fischer et al. (2020)

2. Hoshino et al. (2020)

3. Licandeo et al. (2020)

4. Sagarese et al. (2019)

5. Plagányi et al. (2019)

6. Sun et al. (2018)

7. Plagányi et al. (2018)

8. Sagarese et al. (2018)

9. Jardim et al. (2015)

10. Dowling et al. (2015a)

11. Doonan et al. (2015)

12. Geromont and Butterworth (2015a)

13. Geromont and Butterworth (2015b)

14. Punt et al. (2012)

15. Prince et al. (2011)

16. Kurota et al. (2010)

17. Cox and Kronlund (2008)

18. Rademeyer et al. (2007)

19. Kelly and Codling (2006)

20. Campbell and Dowling (2005)

Fischer et al. (2020) was excluded because it is my own work and included in a later chapter.

One further paper was included because it was mentioned in the MSE best practice paper by

Punt et al. (2016)

21. Pomarede et al. (2010)

292



The references cited in each of these papers were subjected to the same selection criteria defined

above, and this process repeated recursively, if necessary. This led to 13 additional papers:

22. Butterworth and Geromont (2001)

23. Kurota (2005)

24. ICES (2012b)

25. Klaer et al. (2012)

26. Carruthers et al. (2014)

27. Carruthers et al. (2016)

28. Dowling et al. (2015b)

29. Hillary et al. (2016)

30. O’Neill et al. (2010)

31. Smith et al. (2008)

32. Breen et al. (2009)

33. Apostolaki and Hillary (2009)

34. Breen et al. (2003)

The remaining references were either referenced in previously included papers and relevant to

the review but were not specifically about empirical MPs

35. MacCall (2009)

36. Wetzel and Punt (2011)

a synthesis of already included references

37. Geromont (2014)

or updates of previously mentioned management frameworks

38. Department of Agriculture and Water Resources (2018)

39. SAFMC (2011)

40. CSIRO (2009)

41. ICES (2019a)
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Appendix B

Appendix to Chapter 6

The following is an Appendix to Chapter 6 and adapted from the supplementary material

published in Fischer et al. (2020):

Fischer, S. H., De Oliveira, J. A. A. & Kell, L. T. (2020). Linking the performance of a

data-limited empirical catch rule to life-history traits. ICES Journal of Marine Science,

77 (5), 1914–1926. https://doi.org/10.1093/icesjms/fsaa054

B.1 Sensitivity analysis of operating model assumptions

B.1.1 Background

This part of the Appendix describes additional sensitivity analyses of the assumptions used to

create the operating models and observations.

The recruitment in the operating model for all stocks was modelled with a Beverton-Holt

stock-recruitment model (see Chapter 5 and Equations 5.9 to 5.12). The steepness of the re-

cruitment model was set to a fixed value of h = 0.75. Recruitment variability was implemented

with a log-normal noise term with sd = 0.6 (in log-space). During the work, concerns were

raised about whether it is appropriate to use a constant value for recruitment steepness and

how this might affect results. Additional work was carried out to explore the impact of the

recruitment assumptions, and also the influence of uncertainty in the indices for biomass and

length-frequencies.

The default value for steepness of h = 0.75 used in this study was adopted from a previous

study by Jardim et al. (2015) who based their decision on Myers et al. (1999). This value (0.75)

is a medium value from the range of estimates in Myers et al. (1999) and, therefore, is suitable
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for generic simulations. Myers et al. (1999) estimated e.g. averages of h = 0.71 for Clupeidae,

h = 0.79 for Gadidae and h = 0.80 for Pleuronectidae.

In empirical data, relationships between steepness and life-history parameters are scarce and

notoriously difficult to estimate, and this is particularly the case for data-limited stocks for

which usually no data or assessment exist on which to base estimates of steepness. The stocks

simulated in the present study are based on life-history parameters from real stock units and

are not simply averages for species. These stocks are data-limited and therefore no analytical

assessments exist on which to base steepness, i.e. the steepness for these stocks is entirely

unknown. Consequently, a generic medium value was adopted. Myers et al. (1999) estimated h

for 57 species. Median von Bertalanffy growth parameter k values for 53 of these species (Figure

B.1) were extracted from Fishbase (Froese & Pauly, 2019). There did not appear to be any

correlation between these two parameters.
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Figure B.1: Steepness (h) as estimated by Myers et al. (1999) for 53 fish species versus von
Bertalanffy growth parameter k, queried from Fishbase (Froese & Pauly, 2019).

Wiff et al. (2018) screened fish stocks for a link between h and life-history parameters, and

found a logit-link relationship between h and the ratio L50/L∞, but with high uncertainty and

limited predictive power (see Figure 1 in Wiff et al., 2018).

B.1.2 Sensitivity runs

In order to test the sensitivity of the simulations to the imposed recruitment assumptions,

additional sets of operating models (OM) with different assumptions about recruitment were

created and the MSE simulation was repeated with them.

296



Recruitment steepness

1. Steepness levels: low (h = 0.6), medium (h = 0.75; default for this study) and high

(h = 0.9). In a Beverton-Holt recruitment model, steepness cannot go above h = 1, and

h = 0.9 was selected as the high value in order to avoid the absolute maximum. This

high steepness value means that recruitment is only impaired at low SSB and is therefore

largely decoupled from SSB. This corresponds to a 20% increase in steepness, and vice

versa, the low value was selected as a reduction of 20% (i.e. h = 0.6).

2. Linking steepness to life-history. Despite the lack of a clear relationship between steepness

and the life-history parameter k (Figure B.1), two additional sets of OMs were created

where a link between steepness and life-history parameters was imposed. Please note that

these scenarios are purely exploratory and without a sound empirical evidence basis, and

the authors do not believe they are necessarily realistic. For the first set of OMs, steepness

was arbitrarily linked to the von Bertalanffy growth parameters k in a way that the stock

with the lowest k had a steepness of h = 0.5, and the stock with the highest k in the study

a steepness of h = 0.9:

h = 0.4652 + 0.4348k

For the second alternative set of OMs, h was linked to the ratio L50/L∞ according to Wiff

et al. (2018) with a logit link function:

h = 0.2 + e2.706−3.698L50/L∞

1 + e2.706−3.698L50/L∞

The resulting steepness values are shown in Table B.1.

3. An attempt was made to use realistic values for the simulated stocks. Myers et al. (1999)

estimated steepness for 57 species, and for 13 out of the 29 simulated stocks, a steepness

value could be borrowed from that study. For seven stocks, the match was based on the

exact species, and the remaining six were matched based on the family. These steepness

values are shown in Table B.1. It should be noted that these steepness values are not

necessarily appropriate: the stocks were simulated based on life-history parameters from

real stock units; in contrast, the borrowed steepness values are species-specific, based on

entirely different stock units, and from a different time period, and therefore might not

match the simulated stocks.
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4. The default recruitment variability in the Beverton-Holt recruitment model was defined

with sd = 0.6 (of the lognormal noise term). Lower variability was tested with sd = 0.3

and higher variability with sd = 0.9.

Observation uncertainty

The implementation of uncertainty for the indices used in the catch rule was explored.

5. The uncertainty in the biomass index (used in the r component of the catch rule) was

increased from sd = 0.2 to sd = 0.4 and sd = 0.6. The same was done for the length-

frequencies used in the f component for the calculation of mean length in the catch (in-

crease from sd = 0.2 to sd = 0.4 and sd = 0.6). Finally, the implemented uncertainty for

the biomass index and catch length frequencies was increased simultaneously and both set

to sd = 0.4.

Two additional analyses were carried out regarding the value and implementation of obser-

vation uncertainty (without running the MSE).

6. The default uncertainty of the biomass index was defined by an error term with sd = 0.2.

A quick review was conducted for survey indices used within ICES for data-rich stocks for

which age-structured and fully quantitative stock assessments provide estimates of stock

size, which allow the quantification of index uncertainty (see Table B.2). Biomass indices

were derived for these stocks with a sum-product of the numbers at age in the index and

the stock weights at age. This biomass index and the biomass estimated from the stock

assessment were then standardised and the coefficient of variation (CV) of the ratio of the

two biomasses, index/assessment calculated.

7. The length distribution of the catch was calculated with an inverse age-length key (see

Chapter 5), and the mean length in the catch derived from the length distribution after

adding observation noise. A sampling process was not simulated in order to reduce the

computational time. However, the approach used in the MSE simulation was compared

with one where no uncertainty is implemented and one approach where mean length in

the catch is derived by sampling from the catch length distribution.
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Table B.1: Steepness scenarios for the 29 simulated stocks.

Species Name ID default h
(medium)

low h high h h ∼ k h ∼ L50/L∞ h from
Myers et al. (1999)

source

Lophius budegassa Blackbellied angler ang3 0.75 0.6 0.9 0.50 0.76 0.63 species
Raja clavata thornback ray rjc2 0.75 0.6 0.9 0.50 0.75
Sebastes norvegicus golden redfish smn 0.75 0.6 0.9 0.51 0.55 0.39 family (genus)
Anarchias lupus Atlantic wolffish wlf 0.75 0.6 0.9 0.51 0.91
Lepidorhombus whiffiagonis megrim meg 0.75 0.6 0.9 0.52 0.80
Molva molva ling lin 0.75 0.6 0.9 0.53 0.68
Raja clavata thornback ray rjc 0.75 0.6 0.9 0.53 0.66
Scyliorhinus canicula lesser spotted dogfish syc 0.75 0.6 0.9 0.53 0.58
Mustelus asterias starry smooth-hound sdv 0.75 0.6 0.9 0.53 0.65
Lophius piscatorius angler ang 0.75 0.6 0.9 0.54 0.63 0.64 family
Lophius piscatorius angler ang2 0.75 0.6 0.9 0.54 0.71 0.64 family
Pollachius pollachius pollack pol 0.75 0.6 0.9 0.55 0.73 0.79 family
Melanogrammus aeglefinus haddock had 0.75 0.6 0.9 0.55 0.83 0.74 species
Nephrops Norway lobster nep 0.75 0.6 0.9 0.55 0.82
Mullus surmuletus Striped red mullet mut 0.75 0.6 0.9 0.56 0.84
Spondyliosoma cantharus black sea-bream sbb 0.75 0.6 0.9 0.56 0.74 0.95 family
Pleuronectes platessa European plaice ple 0.75 0.6 0.9 0.57 0.78 0.86 species
Scyliorhinus canicula lesser spotted dogfish syc2 0.75 0.6 0.9 0.57 0.48
Argentina silus greater argentine arg 0.75 0.6 0.9 0.57 0.50
Scopthalmus maximus turbot tur 0.75 0.6 0.9 0.60 0.75
Chelidonichtys lucerna tub gurnard gut 0.75 0.6 0.9 0.60 0.70
Merlangius merlangus whiting whg 0.75 0.6 0.9 0.63 0.60 0.81 species
Scophthalmus rhombus brill bll 0.75 0.6 0.9 0.63 0.74
Microstomus kitt lemon sole lem 0.75 0.6 0.9 0.65 0.60 0.8 family
Engraulis encrasicolus anchovy ane 0.75 0.6 0.9 0.66 0.60 0.47 species
Zeus faber John Dory jnd 0.75 0.6 0.9 0.67 0.64
Sardina pilchardus European pilchard sar 0.75 0.6 0.9 0.73 0.66 0.34 species
Clupea harengus herring her 0.75 0.6 0.9 0.73 0.63 0.74 species
Ammodytes spp. sandeels san 0.75 0.6 0.9 0.90 0.76
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Table B.2: Survey index CVs for some example data-rich stocks within ICES. Shown are only
the main surveys covering several age classes. The analysis is based on recent ICES stock
assessments which were used to provide advice (ICES, 2018d, 2019e).

Species Stock area Assessment
year

Survey
index

Survey
year range

Survey
ages

CV*

Cod North Sea 2019 IBTS Q1 1983-2018 1-5 0.23
IBTS Q3 1992-2018 1-4 0.21

Plaice Irish Sea 2018 UK BT 1993-2018 1-7 0.25
Herring North Sea 2018 HERAS 1989-2018 1-8 0.20

IBTS Q3 1998-2018 0-5 0.31
Whiting North Sea 2018 IBTS Q1 1983-2018 1-5 0.41

IBTS Q3 1991-2017 0-5 0.25
Haddock North Sea 2018 IBTS Q1 1983-2018 1-5 0.38

IBTS Q3 1991-2017 0-5 0.19
Sole western

English
Channel

2019 Q1SWBeam 2006-2018 2-11 0.20
FSP UK 2004-2018 2-11 0.19

* The CVs are derived by converting the age-structured survey abundance indices into survey biomass indices;
assessment biomass estimates were extracted from the stock assessment; biomass indices and assessment bio-
mass estimates were then standardised over their corresponding year range and the CV calculated of the ratio
index/assessment.

B.1.3 Results of sensitivity runs

The SSB trends from the sensitivity runs are shown in Figures B.2-B.8 and a comparison of the

summary statistics in Figures B.9-B.10.

Recruitment

When simulating the stocks with different steepness levels (0.6, 0.75, 0.9), the SSB trajectories

for the stocks were similar and no major deviations were apparent (Figure B.2). As discussed

in Chapter 6, with default steepness of h = 0.75, there was a clear split between stocks with

k ≤ 0.32 year−1 which survived during the simulation period, whereas stocks with higher k

collapsed. Assuming a higher steepness (0.9) did not change this general separation of the

stock survival based on k. There was an exception for two lower-k stocks (angler, ang2 with

k = 0.18 year−1 and pollack, pol with k = 0.19 year−1), which collapsed with the higher

steepness. The higher-k stocks still collapsed, some of them even earlier, except for sandeel (san,

k = 1 year−1), which recovered to very high levels, but this can be attributed to a failure of the

catch rule, which reduced the catch heavily early in the projection and kept it low afterwards

(because it was close to zero), moving the stock towards virgin biomass. Using a lower steepness

(0.6) did not change the general pattern for the simulated stocks apart from black seabream

(sbb, k = 0.22 year−1), which collapsed under the default steepness assumption, but did not

collapse with the lower steepness.
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Figure B.3 shows the SSB trajectories for the two scenarios where a relationship between

life-history parameters and steepness is imposed, and the results are very similar to the default

assumption of constant steepness, regardless of life-history.

Figure B.4 shows the results for the 13 stocks for which species-specific steepness values

could be borrowed from Myers et al. (1999). The results are similar and the outcome (collapsed

or not collapsed) remains unchanged.

The alternative steepness scenarios did not cause major deviations or biases in the summary

statistics (Figure B.9a-e).

The results were relatively insensitive to recruitment variability (Figure B.5, Figure B.9f-g).

For the lower-k stocks, increasing recruitment variability led to higher terminal SSBs without

changing the general trends; for stocks with k ≥ 0.32 year−1, this increasing recruitment variab-

ility led to earlier collapses. Lower recruitment variability had the opposite effect. One exception

is black seabream (k = 0.22 year−1), which avoided the stock collapse when simulated with lower

recruitment variability.

Observation uncertainty

Increasing the uncertainty in the biomass index had a minor impact on SSB trajectories for

the higher-k stocks (Figure B.6). However, for the lower-k stocks, increasing index uncertainty

had an effect on some stocks. For two stocks (angler, ang k = 0.18 year−1 and pollack, pol

k = 0.19 year−1), this caused a declining trend in SSB and a collapse after more than 60

years. For three additional stocks, tripling the index uncertainty caused stock collapses (ling,

lin k = 0.14 year−1, starry smooth-hound, sdv k = 0.15 year−1, angler, ang k = 0.18 year−1 and

plaice, ple k = 0.23 year−1). Increasing the uncertainty of the catch length-frequencies had a

minor effect (Figure B.7). Analogously, increasing uncertainty simultaneously for the biomass

index and catch length-frequencies led to results very similar to when only uncertainty for the

biomass index was modified (Figure B.8). The index uncertainty increases had some effects on

the summary statistics (Figure B.10), reflecting stock collapses, in particular when implementing

high index uncertainty.

Table B.2 presents the CVs of the deviation for some data-rich ICES stocks.

Figure B.11 shows a comparison of approaches to estimate mean length in the catch.
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Figure B.2: Comparison of the SSB trajectories depending on the three tested steepness values.
Shown are median trajectories for SSB/BMSY for the 29 simulated stocks, sorted by von Ber-
talanffy growth parameter k (unit: year−1) and for the one-way fishing history. The vertical
grey line indicates the start of the implementation of the catch rule.
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Figure B.3: Comparison of the SSB trajectories for default steepness and scenarios imposing a
link with life-history parameters. “h∼k” denotes the scenario where steepness is linked to k and
“h∼50/Linf” uses the relationship from Wiff et al. (2018), see text above for more details. See
Figure B.2 for more details.
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Figure B.4: Comparison of the SSB trajectories for default steepness and the OMs where steep-
ness values were borrowed from Myers et al. (1999). Shown are only the stocks for which
steepness could be borrowed. See Figure B.2 for more details.
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Figure B.5: Impact of recruitment variability on SSB trajectories; sd = 0.6 is the default
scenario. See Figure B.2 for more details.
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Figure B.6: Impact of biomass index uncertainty on SSB trajectories; sd = 0.2 is the default
scenario. See Figure B.2 for more details.
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Figure B.7: Impact of length-frequency uncertainty on SSB trajectories; sd = 0.2 is the default
scenario. See Figure B.2 for more details.
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Figure B.9: Comparison of summary statistics from the default scenario (on x-axis, columns
represent different summary statistics) versus sensitivity runs with different recruitment as-
sumptions (on y-axis, rows represent different scenarios). Each point in the plots corresponds
to one of the 29 simulated stocks in the one-way fishing history. Row “e” contains fewer stocks
and only the ones for which steepness values were available. The grey diagonal line is y=x.
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Figure B.10: Comparison of summary statistics from the default scenario (on x-axis, columns
represent different summary statistics) versus scenarios with higher index uncertainties (on y-
axis, rows represent different scenarios). See Figure B.9 for more details.
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Figure B.11: A comparison of mean lengths for one example stock, pollack, during the historical
fishing period. Shown are the lengths from the inverse age-length key without observation error
(top row), the approach where uncertainty is added to the numbers at length by applying an error
term with sd = 0.2 in log-space (middle row, the default method used in the MSE simulation),
and an approach where mean length is calculated from sampling (for each year and replicate,
50 samples were randomly drawn and the mean length calculated from these samples, bottom
row). The solid black line is the median, surrounded by 50 and 90% confidence intervals. The
coloured curves are the first 5 (of 500) replicates.

B.1.4 Discussion

The sensitivity runs detailed here support the conclusions from Chapter 6.

Recruitment

The results of the MSE simulations are relatively insensitive to assumptions about recruitment

steepness, and the division between surviving stocks with lower k and collapsing stocks with

higher k remains.

The scenarios linking steepness to life-history parameters should be considered as purely

exploratory and are not necessarily realistic. The attempt to use realistic steepness parameters

for some stocks, borrowing values from Myers et al. (1999), should also be treated with caution.

Despite using species-specific steepness, they might not ultimately match the stocks simulated

in this study. Some of the higher-k stocks had low steepness values according to Myers et al.

(1999), and these might be questionable for such dynamic pelagic species.
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Recruitment steepness is difficult to estimate, and steepness estimates depend on the meth-

odology deployed and stock assessment results on which the estimation procedure is based. This

is even more difficult for data-limited stocks, the subject of the present study, for which quantit-

ative stock assessments do not exist, rendering steepness estimation procedures infeasible. The

situation is exacerbated by a lack of scientifically sound relationships between steepness and life-

history traits. Some studies have found links, such as Wiff et al. (2018), but these links entail

a high uncertainty, therefore limiting their usefulness for simulation testing. Implementing the

steepness link from Wiff et al. (2018) merely led to noise for stock trajectories and summary

statistics in the simulation results. Consequently, using a single generic medium steepness value

was appropriate, and the sensitivity to this steepness has been evaluated by including lower and

higher levels of steepness.

The simulations were shown to be largely insensitive to different levels of recruitment vari-

ability. Despite using somewhat arbitrary levels of recruitment variability, the chosen approach

was appropriate and did not generally affect the conclusions.

Observation uncertainty

Index uncertainty did have an effect on some stocks and caused poorer performance. However,

most stocks were unaffected, and the general outcome (split between lower- and higher-k stocks)

is still valid.

The uncertainty implemented for the catch length-frequency had a minor effect, because,

as discussed in Chapter 6, component f had only a minor contribution to the advised catch,

whereas component r (biomass index trend) dominated.

The quantification of the level of observation error, i.e. the difference between the observed

index and the actual stock, might be considered arbitrary in the case for the data-limited stocks,

because the actual stock size is unknown, and as a result, the CV for observation error cannot

be estimated. A quick review of survey indices used within ICES for data-rich stocks (see Table

B.2) was conducted. For these stocks, quantitative assessment results exist, and it is possible to

quantify the deviation between survey biomass and assessment estimate. Several of these indices

have CVs around 0.2. Even though these surveys are primarily targeting data-rich stocks, the

same surveys also catch individuals from data-limited stocks, and are used in their assessments.

The mean length in the catch was simulated without sampling; however, a comparison of

this approach with mean length derived from sampling revealed that the approximation led to
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very similar results, both in terms of median as well as in the spread (see Figure B.11), and the

approach is therefore appropriate. The main reason the sampling approach was not followed

was because it added a substantial overhead to computational time.

Fisheries selectivity

The fisheries selectivity in the operating models used Equation 5.16 (see Chapter 5) and occurred

before maturity for all stocks. This was applied to all stocks and allowed easy comparison

between stocks. Alternative selectivity scenarios and sensitivity runs were considered; however,

results were not included here for the following reasons:

1. Consistency

Selectivity cannot be changed during the simulation and before the first implementation

of the catch rule without impairing temporal consistency, because the catch rule bases the

new catch advice on the previous catch, and some of the components of the catch rule also

use data from previous catches.

2. Operating models

It is not possible to solely look at the effect of a different selectivity because a change in

the selectivity does not only impact the catch, but results in a different operating model

with different characteristics (depending on the form of the alternative selectivity) and

reference points.

Alternative parameterisations for selectivity modify the historical fishing pattern because

the historical fishing scenarios were based on fishing mortality and the reference point Fcrash

(e.g. in the one-way fishing scenario, the fishing mortality is increased from 0.5FMSY to

0.8Fcrash within 25 years). Fcrash changes with selectivity, and the starting point of the

MSE, when the catch rule is implemented the first time, is different, both in terms of

absolute biomass as well as relative to BMSY. This would impair direct comparability

between selectivity scenarios.

3. Catch rule components

The catch rule produces catch advice that is the result of complex interactions among

the catch rule components, which use different sources of information (previous catches,

catch length frequencies, and survey biomass index). Selectivity affects the components
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differently, and variations in selectivity could potentially lead to a mismatch of derived

information. The biomass index has a selectivity different from fisheries selectivity and cov-

ers younger fish; it is therefore only indirectly influenced by changes in fisheries selectivity.

However, component f of the catch rule (derived from catch length frequency) is directly

influenced: an alternative selectivity will lead to a different age and length distribution of

the catch, and also change the length reference point LF =M . Increasingly later-occurring

selectivity will lead to older fish in the catch, and the length distribution is therefore

likely to be less informative due to the length growth of individuals. In an extreme case

where selectivity occurs well after maturity, components r and f of the catch rule will use

information from different parts of the stock with potentially conflicting signals.

Alternative selectivity scenarios have been trialled, but the results for some stocks were not

trivial due to the reasons mentioned above.

Conclusion

In conclusion, the exploration into the recruitment assumptions showed that the results and

conclusions from this study are largely robust to the values of steepness h and recruitment

variability. In reality, steepness is notoriously difficult to estimate, and correlations with life-

history information are scarce to find in empirical data, and not part of this study.
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Appendix C

Appendix to Chapter 7

The following is an Appendix to Chapter 7 and adapted from the supplementary material

published in Fischer et al. (2021a):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2021a). Using a genetic

algorithm to optimize a data-limited catch rule. ICES Journal of Marine Science, 78 (4),

1311–1323. https://doi.org/10.1093/icesjms/fsab018

C.1 Tables

Table C.1: The rfb rule parameters of the first generation used in the genetic algorithm. Shown
are both the 35 parameter suggestions and the remaining 65 random parameters. The parameters
are defined in Equations 7.2 and 7.3 in Chapter 7. # is the sequential ID of the 100 individuals.

# n0 n1 n2 er ef eb v x

Default value
1 2 3 1 1 1 2 1

Allowed range
{0, 1} {1, 2,

3, 4, 5}
{1, 2,
3, 4, 5}

{0, 0.1,
0.2, ... 2}

{0, 0.1,
0.2, ... 2}

{0, 0.1,
0.2, ... 2}

{1, 2,
3, 4, 5}

{0, 0.01,
0.02, ... 2}

Parameter suggestions
1 0 1 1 1 1 1 1 1
2 0 1 1 1 1 1 2 1
3 0 1 1 0 0 0 2 1
4 1 2 3 0 0 0 1 0
5 1 2 3 1 0 0 1 0
6 1 2 3 0 1 0 1 0
7 1 2 3 1 1 0 1 0
8 1 2 3 0 0 1 1 0
9 1 2 3 1 0 1 1 0
10 1 2 3 0 1 1 1 0
11 1 2 3 1 1 1 1 0
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Table C.1 (continued).
# n0 n1 n2 er ef eb v x

12 1 2 3 0 0 0 2 0
13 1 2 3 1 0 0 2 0
14 1 2 3 0 1 0 2 0
15 1 2 3 1 1 0 2 0
16 1 2 3 0 0 1 2 0
17 1 2 3 1 0 1 2 0
18 1 2 3 0 1 1 2 0
19 1 2 3 1 1 1 2 0
20 1 2 3 0 0 0 1 1
21 1 2 3 1 0 0 1 1
22 1 2 3 0 1 0 1 1
23 1 2 3 1 1 0 1 1
24 1 2 3 0 0 1 1 1
25 1 2 3 1 0 1 1 1
26 1 2 3 0 1 1 1 1
27 1 2 3 1 1 1 1 1
28 1 2 3 0 0 0 2 1
29 1 2 3 1 0 0 2 1
30 1 2 3 0 1 0 2 1
31 1 2 3 1 1 0 2 1
32 1 2 3 0 0 1 2 1
33 1 2 3 1 0 1 2 1
34 1 2 3 0 1 1 2 1
35 1 2 3 1 1 1 2 1

Random parameters
36 1 5 2 1.3 0.9 1.7 4 0.01
37 0 3 2 0.6 1.0 1.4 2 1.21
38 1 3 2 0.8 1.3 0.7 3 1.81
39 0 2 3 2.0 0.3 0.3 2 1.41
40 0 4 5 1.7 0.7 0.8 2 0.53
41 0 3 3 1.9 0.8 1.9 3 1.70
42 0 3 2 1.6 0.2 1.6 2 0.67
43 0 2 1 1.6 1.9 1.5 4 1.16
44 1 2 3 0.5 1.7 1.9 3 0.87
45 0 3 4 1.5 1.8 2.0 5 0.10
46 0 3 2 2.0 1.9 1.2 4 1.46
47 1 1 2 0.6 0.1 0.1 2 1.10
48 0 1 2 0.8 0.8 0.7 2 1.50
49 0 4 4 1.6 1.1 0.6 4 0.10
50 1 5 3 0.2 0.2 0.2 3 1.43
51 1 3 4 0.7 1.6 0.1 2 0.60
52 1 3 4 0.9 1.5 0.7 1 0.57
53 0 3 3 0.3 0.1 0.7 1 1.66
54 1 5 3 1.2 1.0 0.3 4 0.17
55 0 3 3 1.9 1.8 1.2 4 0.09
56 1 4 2 2.0 0.1 0.8 5 0.70
57 1 3 3 0.4 0.6 1.9 2 1.08
58 1 2 5 1.1 1.0 1.3 5 1.22
59 1 2 2 0.8 1.2 0.7 2 0.54
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Table C.1 (continued).
# n0 n1 n2 er ef eb v x

60 1 4 3 1.4 0.5 0.4 4 0.41
61 1 3 2 0.5 0.8 0.2 2 0.76
62 0 2 3 0.9 0.7 2.0 1 0.95
63 0 4 2 0.3 1.9 0.8 4 1.67
64 1 1 3 0.7 0.2 1.1 4 0.24
65 1 4 5 1.5 0.1 1.5 5 1.35
66 0 3 4 1.0 1.9 1.7 4 0.99
67 1 3 5 0.1 0.9 1.1 4 1.80
68 0 2 3 1.6 0.7 0.0 2 1.10
69 0 3 3 0.8 0.3 1.8 3 0.26
70 0 3 3 2.0 0.1 1.5 3 0.88
71 0 2 1 0.6 1.3 0.8 1 0.38
72 0 3 2 1.7 1.2 0.2 2 0.87
73 1 1 3 0.2 2.0 0.1 3 0.45
74 1 2 2 1.8 1.2 1.6 4 1.92
75 0 2 5 0.9 0.1 1.7 4 0.90
76 1 2 3 0.2 0.3 1.3 2 1.55
77 0 5 2 0.7 1.0 0.3 4 0.32
78 0 3 2 1.7 0.0 0.7 1 1.73
79 0 4 4 0.6 0.9 1.5 3 0.41
80 1 5 4 1.2 0.5 1.8 2 0.36
81 0 3 2 1.7 1.9 1.4 3 0.33
82 0 1 1 0.1 1.4 0.5 5 1.13
83 1 2 4 1.4 0.3 1.3 2 1.45
84 0 4 3 1.4 1.0 0.6 2 1.75
85 1 2 2 0.9 1.4 1.9 4 1.42
86 0 4 1 0.9 0.9 0.3 4 0.95
87 1 4 1 1.1 1.9 0.8 3 1.64
88 0 4 3 1.9 1.4 0.5 4 0.03
89 0 3 2 0.5 0.8 0.2 3 1.99
90 0 3 2 0.4 0.2 1.7 3 1.27
91 1 5 2 0.8 0.5 1.1 3 0.86
92 1 4 2 0.7 1.7 1.3 2 0.06
93 0 4 2 1.7 0.9 0.8 1 1.51
94 1 3 3 0.4 1.0 1.7 2 0.42
95 1 5 4 1.0 1.4 1.5 2 2.00
96 0 2 1 0.9 1.5 0.7 4 1.81
97 1 2 3 1.1 0.3 1.9 4 1.42
98 0 5 5 1.3 1.7 1.3 2 1.46
99 0 3 2 2.0 1.9 0.1 3 0.94
100 1 5 1 0.5 1.2 1.2 3 1.73
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C.2 Figures
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Figure C.1: Comparison of the summary statistics of the current ICES management procedure
with the rfb rule excluding (default) and including a 20% uncertainty cap for two fishing histories.
The fitness function corresponds to “SSB+Catch+risk+ICV” of Chapter 7. The stocks are sorted
by the von Bertalanffy growth parameter k in ascending order from left to right.
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Appendix D

Appendix to Chapter 8

The following is an Appendix to Chapter 8 and adapted from the supplementary material

published for Fischer et al. (2021b):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2021b). Application

of explicit precautionary principles in data-limited fisheries management. ICES Journal

of Marine Science, 78 (8), 2931–2942. https://doi.org/10.1093/icesjms/fsab169

D.1 Tables

Table D.1: Default and optimised rfb rule parameters. See Equation (8.2) and Table 8.1 in
Chapter 8 for definitions of the parameters. Shown are only the parameters included in the
optimisation and fixed parameters (in italics). “generations” is the number of generations re-
quired in the genetic algorithm to obtain convergence. “fitness improvement” is the improvement
relative to the fitness of the default rfb rule parameterisation. (Table continued on next page)

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

Default rfb rule parameters
1 2 3 1.0 1.0 1.0 2 1.00 ∞ 0

Parameter exploration for pollack (see Figure 8.5 in Chapter 8)
one-way pol 1 0.74 43
one-way pol 19 1.32 0.74 9
one-way pol 10 0.74 ∞ 0 43
one-way pol 22 0 2 3 1.3 0.6 1.7 2 0.94 75
one-way pol 10 0 2 3 1.3 0.6 1.7 2 0.94 ∞ 0 75
random pol 1 0.73 39
random pol 15 1.53 0.68 4
random pol 10 0.73 ∞ 0 39
random pol 59 0 3 4 1.2 1 1.5 2 0.73 48
random pol 10 0 3 4 1.2 1 1.5 2 0.73 ∞ 0 48

Optimisation with multiplier for all stocks [“(f) rfb: MSY-PA - mult” in Figure 8.7 in
Chapter 8]

one-way ang3 1 0.97 77
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Table D.1: (continued).

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

one-way rjc2 1 0.96 79
one-way smn 1 0.79 46
one-way wlf 1 1.04 16
one-way meg 1 1.40 45
one-way lin 1 0.81 50
one-way rjc 1 0.80 46
one-way syc 1 0.78 39
one-way sdv 1 0.80 48
one-way ang 1 0.69 33
one-way ang2 1 0.70 35
one-way pol 1 0.74 43
one-way had 1 0.64 49
one-way nep 1 0.80 50
one-way mut 1 0.66 41
one-way sbb 1 0.54 32
one-way ple 1 0.66 39
one-way syc2 1 0.79 32
one-way arg 1 0.73 27
one-way tur 1 0.67 49
one-way gut 1 0.51 28
one-way whg 1 0.38 22
one-way bll 1 0.33 24
one-way lem 1 0.48 27
one-way ane 1 0.40 11
one-way jnd 1 0.21 22
one-way sar 1 0.21 17
one-way her 1 0.23 16
one-way san 1 0.20 23
random ang3 1 0.23 34
random rjc2 1 0.24 33
random smn 1 0.76 38
random wlf 1 0.66 46
random meg 1 0.86 17
random lin 1 0.62 30
random rjc 1 0.67 28
random syc 1 0.74 28
random sdv 1 0.62 36
random ang 1 0.67 34
random ang2 1 0.70 39
random pol 1 0.73 39
random had 1 0.77 49
random nep 1 0.82 49
random mut 1 0.74 40
random sbb 1 0.65 31
random ple 1 0.75 39
random syc2 1 0.82 29
random arg 1 0.77 24
random tur 1 0.79 51
random gut 1 0.65 29
random whg 1 0.47 17
random bll 1 0.41 20
random lem 1 0.60 29
random ane 1 0.47 11
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Table D.1: (continued).

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

random jnd 1 0.28 22
random sar 1 0.27 17
random her 1 0.29 16
random san 1 0.27 23

Optimisation with all parameters for all stocks [“(g) rfb: MSY-PA - all” in Figure 8.7 in
Chapter 8]

one-way ang3 18 0 4 3 1.5 0.6 1.2 3 1.00 ∞ 0.50 89
one-way rjc2 30 0 3 3 1.4 0.7 0.5 2 0.97 ∞ 0.24 91
one-way smn 30 1 3 5 1.6 0.3 0.8 3 0.79 ∞ 0.25 54
one-way wlf 50 0 2 3 1.4 0.3 1.0 2 1.07 ∞ 0.26 75
one-way meg 36 0 2 3 1.5 0.0 1.0 2 1.00 ∞ 0.37 83
one-way lin 30 0 3 5 1.2 0.8 1.6 1 0.92 ∞ 0.35 76
one-way rjc 33 0 3 4 1.5 1.2 1.0 2 0.82 ∞ 0.08 65
one-way syc 88 0 3 5 1.8 0.6 1.1 3 0.85 ∞ 0.33 66
one-way sdv 70 0 3 5 1.5 0.9 1.3 3 0.88 ∞ 0.18 75
one-way ang 22 0 3 3 1.9 0.9 0.9 2 0.72 ∞ 0.34 50
one-way ang2 74 0 4 3 1.3 0.7 0.9 2 0.80 2.08 0.28 59
one-way pol 10 0 2 3 1.3 0.6 1.7 2 0.94 ∞ 0.00 75
one-way had 100 0 3 5 1.6 0.6 1.0 3 0.74 ∞ 0.25 63
one-way nep 12 0 3 3 1.3 0.9 1.6 2 0.82 ∞ 0.25 54
one-way mut 10 1 2 3 1.0 1.0 1.0 2 0.66 ∞ 0.00 41
one-way sbb 30 0 3 5 1.0 0.8 0.8 2 0.57 ∞ 0.25 33
one-way ple 73 0 3 5 1.3 0.6 0.6 2 0.70 ∞ 0.13 43
one-way syc2 35 0 3 3 1.7 0.3 1.1 3 0.80 ∞ 0.17 42
one-way arg 30 0 3 5 1.9 0.5 0.8 4 0.66 ∞ 0.36 37
one-way tur 36 0 3 3 1.4 0.9 0.9 2 0.74 ∞ 0.11 52
one-way gut 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 29
one-way whg 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 25
one-way bll 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 28
one-way lem 36 0 3 3 0.5 0.4 0.9 1 0.41 ∞ 0.55 29
one-way ane 53 1 3 3 0.8 0.8 0.7 1 0.17 ∞ 0.64 15
one-way jnd 27 1 4 3 0.9 0.6 1.1 2 0.09 ∞ 0.38 25
one-way sar 10 0 4 4 1.6 1.1 0.6 4 0.10 4.11 0.27 18
one-way her 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 20
one-way san 16 1 2 3 0.8 1.3 1.0 1 0.22 1.53 0.09 26
random ang3 38 1 2 5 0.7 0.5 0.8 1 0.19 ∞ 0.18 38
random rjc2 16 1 2 3 0.9 1.1 0.7 1 0.19 1.53 0.04 37
random smn 30 1 4 5 1.2 0.7 0.9 3 0.72 ∞ 0.22 42
random wlf 44 1 4 4 1.6 1.0 1.0 2 0.64 ∞ 0.15 49
random meg 82 1 4 5 1.5 1.1 1.1 2 0.85 ∞ 0.10 22
random lin 30 1 3 5 1.5 1.0 1.0 2 0.63 ∞ 0.17 34
random rjc 41 0 4 4 1.4 1.0 1.1 2 0.65 ∞ 0.18 34
random syc 41 0 4 5 1.8 0.7 1.2 4 0.65 ∞ 0.31 36
random sdv 30 1 3 5 1.5 0.9 0.9 2 0.62 ∞ 0.08 39
random ang 36 1 3 5 1.0 1.0 1.0 2 0.66 ∞ 0.07 36
random ang2 10 1 2 3 1.0 1.0 1.0 2 0.70 ∞ 0.00 39
random pol 10 0 3 4 1.2 1.0 1.5 2 0.73 ∞ 0.00 48
random had 10 1 2 3 1.0 1.0 1.0 2 0.77 ∞ 0.00 49
random nep 29 1 3 3 1.0 0.8 1.0 3 0.80 ∞ 0.19 52
random mut 10 1 2 3 1.0 1.0 1.0 2 0.74 ∞ 0.00 40
random sbb 10 1 2 3 1.0 1.0 1.0 2 0.65 ∞ 0.00 31
random ple 19 0 4 2 0.9 1.0 0.6 3 0.71 ∞ 0.05 41
random syc2 47 1 3 5 1.2 0.9 1.3 3 0.78 3.82 0.19 34
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Table D.1: (continued).

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

random arg 14 1 3 4 1.0 0.8 0.9 3 0.72 ∞ 0.17 25
random tur 37 0 2 2 0.9 0.9 0.9 1 0.96 ∞ 0.47 59
random gut 14 0 2 3 1.0 1.0 1.1 2 0.67 ∞ 0.00 30
random whg 29 0 2 3 0.7 0.8 0.7 2 0.58 ∞ 0.29 19
random bll 30 1 3 3 0.1 0.9 1.5 2 0.57 ∞ 0.08 23
random lem 11 1 2 3 0.3 0.0 0.3 1 0.68 ∞ 0.00 32
random ane 13 1 2 3 0.4 1.0 0.7 1 0.33 ∞ 0.75 15
random jnd 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 26
random sar 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 21
random her 19 1 2 3 0.6 0.8 0.6 1 0.26 ∞ 0.56 19
random san 10 0 2 1 0.6 1.3 0.8 1 0.38 1.14 0.26 28

Optimisation with multiplier and fixed uncertainty cap for all stocks [“(h) rfb (capped):
MSY-PA - mult” in Figure 8.7 in Chapter 8]

one-way ang3 1 0.83 1.2 0.7 69
one-way rjc2 1 0.81 1.2 0.7 69
one-way smn 1 0.63 1.2 0.7 46
one-way wlf 1 0.74 1.2 0.7 -41
one-way meg 1 0.51 1.2 0.7 -42
one-way lin 1 0.38 1.2 0.7 29
one-way rjc 1 1.09 1.2 0.7 8
one-way syc 1 0.34 1.2 0.7 25
one-way sdv 1 0.38 1.2 0.7 22
one-way ang 1 1.03 1.2 0.7 5
one-way ang2 1 1.03 1.2 0.7 6
one-way pol 1 1.11 1.2 0.7 9
one-way had 1 1.28 1.2 0.7 23
one-way nep 1 1.28 1.2 0.7 28
one-way mut 1 1.24 1.2 0.7 32
one-way sbb 1 1.12 1.2 0.7 16
one-way ple 1 1.21 1.2 0.7 29
one-way syc2 1 0.50 1.2 0.7 27
one-way arg 1 1.08 1.2 0.7 10
one-way tur 1 1.31 1.2 0.7 29
one-way gut 1 1.07 1.2 0.7 11
one-way whg 1 0.92 1.2 0.7 18
one-way bll 1 0.84 1.2 0.7 11
one-way lem 1 1.08 1.2 0.7 13
one-way ane 1 0.95 1.2 0.7 13
one-way jnd 1 0.61 1.2 0.7 15
one-way sar 1 0.59 1.2 0.7 13
one-way her 1 0.64 1.2 0.7 15
one-way san 1 0.49 1.2 0.7 15
random ang3 1 1.08 1.2 0.7 2
random rjc2 1 1.05 1.2 0.7 2
random smn 1 0.62 1.2 0.7 36
random wlf 1 1.24 1.2 0.7 17
random meg 1 1.73 1.2 0.7 -36
random lin 1 1.08 1.2 0.7 2
random rjc 1 0.36 1.2 0.7 15
random syc 1 0.48 1.2 0.7 22
random sdv 1 0.35 1.2 0.7 9
random ang 1 0.34 1.2 0.7 27
random ang2 1 0.46 1.2 0.7 30
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Table D.1: (continued).

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

random pol 1 0.41 1.2 0.7 30
random had 1 0.38 1.2 0.7 41
random nep 1 0.50 1.2 0.7 46
random mut 1 0.30 1.2 0.7 39
random sbb 1 0.29 1.2 0.7 28
random ple 1 0.42 1.2 0.7 37
random syc2 1 0.73 1.2 0.7 25
random arg 1 0.65 1.2 0.7 18
random tur 1 0.42 1.2 0.7 49
random gut 1 0.31 1.2 0.7 28
random whg 1 1.13 1.2 0.7 15
random bll 1 1.15 1.2 0.7 11
random lem 1 0.27 1.2 0.7 30
random ane 1 1.17 1.2 0.7 14
random jnd 1 1.05 1.2 0.7 17
random sar 1 1.10 1.2 0.7 16
random her 1 1.10 1.2 0.7 16
random san 1 0.93 1.2 0.7 16

Optimisation with multiplier and fixed conditional uncertainty cap for all stocks [“(i) rfb
(cond. capped): MSY-PA - mult” in Figure 8.7 in Chapter 8]

one-way ang3 1 1.00 1.2 0.7 73
one-way rjc2 1 0.99 1.2 0.7 74
one-way smn 1 0.80 1.2 0.7 48
one-way wlf 1 1.08 1.2 0.7 -8
one-way meg 1 1.43 1.2 0.7 28
one-way lin 1 0.80 1.2 0.7 48
one-way rjc 1 0.79 1.2 0.7 44
one-way syc 1 0.78 1.2 0.7 39
one-way sdv 1 0.79 1.2 0.7 47
one-way ang 1 0.67 1.2 0.7 33
one-way ang2 1 0.69 1.2 0.7 34
one-way pol 1 0.73 1.2 0.7 42
one-way had 1 0.30 1.2 0.7 49
one-way nep 1 0.75 1.2 0.7 49
one-way mut 1 0.59 1.2 0.7 42
one-way sbb 1 0.35 1.2 0.7 33
one-way ple 1 0.53 1.2 0.7 39
one-way syc2 1 0.79 1.2 0.7 33
one-way arg 1 0.72 1.2 0.7 28
one-way tur 1 0.49 1.2 0.7 50
one-way gut 1 0.36 1.2 0.7 30
one-way whg 1 1.11 1.2 0.7 17
one-way bll 1 1.16 1.2 0.7 13
one-way lem 1 0.19 1.2 0.7 30
one-way ane 1 1.11 1.2 0.7 12
one-way jnd 1 0.96 1.2 0.7 17
one-way sar 1 1.04 1.2 0.7 16
one-way her 1 1.03 1.2 0.7 16
one-way san 1 1.10 1.2 0.7 17
random ang3 1 1.11 1.2 0.7 2
random rjc2 1 0.00 1.2 0.7 14
random smn 1 0.76 1.2 0.7 40
random wlf 1 0.24 1.2 0.7 46
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Table D.1: (continued).

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

random meg 1 0.01 1.2 0.7 18
random lin 1 0.49 1.2 0.7 30
random rjc 1 0.64 1.2 0.7 28
random syc 1 0.71 1.2 0.7 28
random sdv 1 0.54 1.2 0.7 34
random ang 1 0.65 1.2 0.7 33
random ang2 1 0.70 1.2 0.7 38
random pol 1 0.71 1.2 0.7 39
random had 1 0.72 1.2 0.7 49
random nep 1 0.83 1.2 0.7 50
random mut 1 0.57 1.2 0.7 40
random sbb 1 0.51 1.2 0.7 31
random ple 1 0.70 1.2 0.7 39
random syc2 1 0.83 1.2 0.7 31
random arg 1 0.77 1.2 0.7 25
random tur 1 0.65 1.2 0.7 50
random gut 1 0.53 1.2 0.7 29
random whg 1 0.16 1.2 0.7 21
random bll 1 1.20 1.2 0.7 9
random lem 1 0.52 1.2 0.7 31
random ane 1 0.30 1.2 0.7 15
random jnd 1 1.10 1.2 0.7 16
random sar 1 1.14 1.2 0.7 15
random her 1 1.14 1.2 0.7 16
random san 1 1.17 1.2 0.7 16

Optimisation with all parameters and fixed conditional uncertainty cap for all stocks [“(j)
rfb (cond. capped): MSY-PA - all” in Figure 8.7 in Chapter 8]

one-way ang3 16 1 3 3 1.1 0.3 0.6 1 0.99 1.2 0.7 81
one-way rjc2 21 0 3 3 1.3 1.0 0.6 2 0.99 1.2 0.7 85
one-way smn 37 0 3 3 1.0 0.9 1.1 5 0.65 1.2 0.7 53
one-way wlf 47 0 4 3 1.0 0.4 0.9 1 1.07 1.2 0.7 65
one-way meg 16 0 3 3 1.5 0.8 1.1 1 1.52 1.2 0.7 80
one-way lin 20 0 3 3 1.7 1.0 1.5 1 0.96 1.2 0.7 71
one-way rjc 19 0 3 3 1.1 0.7 1.6 1 0.97 1.2 0.7 69
one-way syc 26 0 3 3 1.7 0.6 1.5 3 0.87 1.2 0.7 55
one-way sdv 14 0 3 3 1.0 0.7 1.0 1 0.92 1.2 0.7 65
one-way ang 20 0 3 4 1.3 0.7 1.6 1 0.90 1.2 0.7 62
one-way ang2 51 0 3 4 1.3 0.8 1.5 1 0.93 1.2 0.7 72
one-way pol 18 0 3 3 1.4 0.7 1.6 1 0.94 1.2 0.7 68
one-way had 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 58
one-way nep 15 0 3 3 1.4 0.6 1.3 1 0.97 1.2 0.7 66
one-way mut 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 50
one-way sbb 12 0 3 3 1.2 0.3 1.1 1 0.56 1.2 0.7 36
one-way ple 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 48
one-way syc2 25 0 3 3 2.0 0.4 1.2 3 0.82 1.2 0.7 43
one-way arg 23 0 3 3 1.5 0.8 1.3 4 0.66 1.2 0.7 35
one-way tur 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 57
one-way gut 20 1 4 3 1.3 0.9 1.2 1 0.55 1.2 0.7 32
one-way whg 16 1 3 3 0.8 0.6 0.8 1 0.39 1.2 0.7 26
one-way bll 17 0 2 3 0.7 0.7 0.4 1 0.17 1.2 0.7 29
one-way lem 15 0 4 3 0.9 0.7 1.1 1 0.57 1.2 0.7 32
one-way ane 14 0 2 3 0.9 0.6 0.8 1 0.40 1.2 0.7 16
one-way jnd 18 1 3 2 0.8 0.4 1.1 3 0.88 1.2 0.7 18
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Table D.1: (continued).

Fishing
history

Stock Gener-
ations

n0 n1 n2 er ef eb v x uu ul Fitness im-
provement
[%]

one-way sar 28 1 3 3 1.1 1.0 0.9 3 1.01 1.2 0.7 17
one-way her 33 1 3 3 1.0 1.0 1.0 3 0.98 1.2 0.7 17
one-way san 14 1 2 3 0.5 1.0 0.8 1 1.05 1.2 0.7 17
random ang3 10 1 2 4 1.5 1.0 0.9 1 0.00 1.2 0.7 38
random rjc2 13 0 2 3 0.8 0.3 0.3 1 0.00 1.2 0.7 38
random smn 13 1 3 3 1.2 0.2 1.3 3 0.74 1.2 0.7 41
random wlf 10 1 3 4 0.9 1.5 0.7 1 0.57 1.2 0.7 47
random meg 12 0 4 3 0.2 0.7 0.4 2 0.01 1.2 0.7 18
random lin 14 1 3 4 1.2 1.5 0.9 1 0.56 1.2 0.7 32
random rjc 47 0 4 4 1.9 1.5 1.0 4 0.42 1.2 0.7 31
random syc 20 1 3 3 1.0 0.9 1.2 2 0.74 1.2 0.7 29
random sdv 15 0 4 5 1.7 0.8 0.9 2 0.54 1.2 0.7 38
random ang 24 0 4 4 1.1 0.8 1.1 1 0.68 1.2 0.7 37
random ang2 17 0 3 4 1.6 1.5 1.3 2 0.67 1.2 0.7 45
random pol 20 0 3 3 1.6 0.8 1.7 1 0.72 1.2 0.7 44
random had 26 0 3 3 1.1 0.8 1.3 1 0.82 1.2 0.7 54
random nep 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 58
random mut 15 0 2 3 0.9 0.7 1.8 1 0.90 1.2 0.7 49
random sbb 61 1 3 4 1.2 1.3 0.6 3 0.50 1.2 0.7 34
random ple 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 52
random syc2 40 1 3 5 1.2 0.7 1.4 3 0.80 1.2 0.7 35
random arg 30 0 3 3 1.5 0.8 1.7 4 0.68 1.2 0.7 30
random tur 10 0 2 3 0.9 0.7 2.0 1 0.95 1.2 0.7 59
random gut 12 1 2 3 1.2 1.2 1.1 1 0.63 1.2 0.7 31
random whg 11 0 3 2 0.3 1.1 0.9 1 0.53 1.2 0.7 21
random bll 12 0 1 3 0.4 0.7 0.9 1 0.37 1.2 0.7 25
random lem 14 0 3 3 1.0 1.5 1.1 1 0.74 1.2 0.7 36
random ane 11 0 2 3 1.0 0.7 1.2 1 0.58 1.2 0.7 16
random jnd 17 1 2 3 0.1 0.0 0.8 2 1.00 1.2 0.7 20
random sar 15 1 2 3 0.0 0.0 0.7 2 1.00 1.2 0.7 20
random her 13 1 2 3 0.1 0.2 0.6 2 1.01 1.2 0.7 20
random san 13 1 2 3 0.3 0.4 1.0 2 1.00 1.2 0.7 17

D.2 Figures
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Figure D.1: Impact of the time period used for calculating summary statistics. The red hori-
zontal line indicates the 5% risk limit. (Figure continued on next page)
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Figure D.1: (continued).
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had (k = 0.2) | one−way had (k = 0.2) | random
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Figure D.1: (continued).
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arg (k = 0.23) | one−way arg (k = 0.23) | random
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Figure D.1: (continued).
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ane (k = 0.44) | one−way ane (k = 0.44) | random
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Figure D.1: (continued).
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Figure D.2: Impact of different precautionary Blim risk limits on summary statistics in optimising
the rfb rule with a multiplier (the remaining parameters are set to their default values of Table
8.1 in Chapter 8). F0+5% indicates the additive 5% point risk limit increase compared to
no fishing. The stock IDs correspond to the ones defined in Table 5.1 in Chapter 5. (Figure
continued on next page)
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Figure D.2: (continued).
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Figure D.2: (continued).
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Figure D.2: (continued).
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Figure D.2: (continued).
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Figure D.2: (continued).
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Figure D.3: Performance improvement of the rfb rule for all stocks, achieved through optim-
isation with the genetic algorithm, and comparison to a “zero-fishing” option and the 2 over 3
rule (from Fischer et al., 2020). For details of options (a)-(j), see Figure 8.7 in Chapter 8. For
illustrative purposes, the risk penalty is shown for “rfb: MSY” (d, e) even though this was not
included in the optimisation. Shorter bars (less negative fitness) indicate better performance.
SSB and catch can be above or below the optimisation target (see Figure 8.5 in Chapter 8),
indicated by “+” and “-”. The parameterisation where the risk is above 5% are easily identifiable
as the bars with large risk-PA elements (in red). The stock IDs correspond to the ones defined
in Table 5.1 in Chapter 5. (Figure continued on next page)
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Figure D.3: (continued).
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Figure D.3: (continued).
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Figure D.3: (continued).
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Figure D.3: (continued).
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Appendix E

Appendix to Chapter 9

The following is an Appendix to Chapter 9 and based on the supplementary material prepared

for Fischer et al. (2022):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (2022). Exploring

a relative harvest rate strategy for moderately data-limited fisheries management. ICES

Journal of Marine Science, 12 pp. https://doi.org/10.1093/icesjms/fsac103

E.1 Operating models

The 29 generic operating models are those described in Chapter 5 (Table 5.1). These were

generated from life-history information and did not correspond to actual ICES stocks. See

Fischer et al. (2020, and Chapters 5 and 6) for details on how the stocks were generated and the

equations used in the management strategy evaluation. Where deviations from Fischer et al.

(2020) occurred, these are described in the following sections.

E.1.1 Fishing histories

The starting position for all stocks was an unfished condition where spawning stock biomass

(SSB) was at the unfished biomass (B0) in year y = −100. Subsequently, all stocks were

subjected to three 100-year (years y = −99 to y = 0) fishing histories (one-way, roller-coaster,

and random), see Figure E.1. Fishing histories were defined by the fishing mortality F , relative

to FMSY and Fcrash (the lowest F that caused the stock to collapse in equilibrium). In the

one-way fishing history, stocks were first fished at F = 0.5FMSY for 75 years, and subsequently,

F was increased exponentially to 0.8Fcrash over 25 years. In the roller-coaster fishing history,
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Figure E.1: The three fishing histories of the operating models. Each curve represents one
simulation replicate. The SSB (second row) is illustrated for pollack. The starting point in this
figure is the unfished stock in year y = −100. The fishing history starts in year y = −99.

stocks were fished at F = 0.5FMSY for 75 years, F was increased exponentially to 0.8Fcrash over

15 years, kept at 0.8Fcrash for five years, and then reduced to FMSY over the last five years. The

random fishing history started with zero fishing Fy=−99 = 0 and was then defined by two points in

time, where F was drawn independently from a uniform distribution, Fy=−50 ∼ U(0, Fcrash) and

Fy=0 ∼ U(0, Fcrash), with linear interpolation between these years. This was done independently

for each simulation replicate.

E.1.2 Observations

Biomass index

The biomass index I was calculated as

Iy =
(︄∑︂

a

Na,y sa Wa

)︄
eεy , (E.1)

where y is the year, a the age, N the stock numbers from the operating model, s the index

selectivity and W the individual weight. A log-normal observation error was added to the

aggregated index with eεy , where εy ∼ N(0, σ2
y) with standard deviation σ (default: σ = 0.2).

The default index was a total biomass index, i.e. selectivity sa = 1.

Catch

Catches were assumed to be known without error.
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Catch length data

Catch length distributions were generated by converting ages into lengths with the von Ber-

talanffy equation:

La = L∞
(︂
1 − e−k(a−a0)

)︂
, (E.2)

where L∞, k, and a0 are the stock-specific von Bertalanffy parameters. The observed mean

length L in the catch was then calculated as:

Ly =
∑︁

L>Lc
L CL,y∑︁

L>Lc
CL,y

eεy , (E.3)

where Lc is the length at first capture, L are the length classes, and CL the catch numbers

at length. A log-normal observation error was added to the aggregated mean length with eεy ,

where εy ∼ N(0, σ2
y) with standard deviation σ (default: σ = 0.2).

E.2 Alternative management procedures

The harvest rate rule was compared to two alternative management procedures, the 2 over 3

rule simulated by Fischer et al. (2021a, see Chapter 7) and the rfb rule simulated by Fischer

et al. (2021b, see Chapter 8).

E.2.1 The 2 over 3 rule

The 2 over 3 rule has the following form:

Ay+1 = Ay r bPA, (E.4)

where Ay+1 is the advised catch for year y + 1, Ay the previous catch advice, r the trend from

a biomass index, and bPA a precautionary buffer. r is defined as

r =
∑︁y−1

i=y−2(Ii/2)∑︁y−3
i=y−5(Ii/3)

, (E.5)

where I is the biomass index. The precautionary buffer reduces the catch advice, usually based

on the results of running a surplus production model, and is defined as
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bPA =

⎧⎪⎪⎨⎪⎪⎩
1, if both F ≤ FMSY & B ≥ 0.5BMSY, OR

if bPA = 0.8 within last two years
0.8 otherwise

(E.6)

The 2 over 3 rule is usually applied with a biennial advice interval (v = 2).

E.2.2 The rfb rule

The rfb rule has the following form:

Ay+1 = Ay r f b x, (E.7)

where r is the trend from a biomass index, f a fishing proxy, b a biomass safeguard, and x a

multiplier. The elements are defined as:

r =
(︄ ∑︁y−n0

i=y−n0−n1+1(Ii/n1)∑︁y−n0−n1
i=y−n0−n1−n2+1(Ii/n2)

)︄er

(E.8)

f =
(︄

L̄y−1
LF =M

)︄ef

(E.9)

b =
(︄

min
{︄

1,
Iy−n0

Itrigger

}︄)︄eb

(E.10)

where I is the biomass index, L̄ the mean catch length above the length of first capture Lc,

LF =M a MSY proxy reference length, Itrigger the index trigger value calculated from the lowest

observed index value Iloss (Itrigger = 1.4Iloss), n0 the offset between last biomass index year and

assessment year, n1 and n2 the number of biomass index years in the numerator and denominator

of r, and er, ef , and eb exponents for weighting r, f and b. The default values are n0 = 1, n1 = 2,

n2 = 3, er = ef = eb = 1. The default advice interval is biennial v = 2. The rfb rule is used

with an uncertainty cap (ul, uu) restricting changes in the catch advice, which, by default, is

conditional on Iy−n0 ≥ Itrigger and set to ul = 0.7 and uu = 1.2.
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E.3 Additional results

E.3.1 Tables

Table E.1: Default and optimised harvest rate rule parameters. See Table 9.2 in Chapter 9 for definitions of the parameters. Empty cells for
parameters take on the default values and are not included in the optimisation. “Generations” is the number of generations required in the genetic
algorithm to obtain convergence. “SSB” and “Catch” are relative to their MSY values, “ICV” is the inter-annual catch variability and “risk” the
Blim risk. Uncertainty cap values marked with * indicate a fixed conditional uncertainty cap. “Fitness improvement” is the improvement relative to
the fitness of the default parameterisation corresponding to the same fishing history and uncertainty cap configuration [no uncertainty cap (uu = ∞,
ul = 0) or a fixed conditional uncertainty cap (uu = 1.20, ul = 0.70) if fixed in the optimisation]. (Table continued on next page)

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

Default parameters
1.00 1 1.4 1 1.00 ∞ 0

Parameter exploration for pollack with MSY fitness function (without risk limit, see
Figure 9.8 in Chapter 9)

MSY one-way pol 1 1.00 1.36 1.08 0.22 0.032 0
MSY one-way pol 1 0 1.35 1.08 0.22 0.030 2
MSY one-way pol 1 5 1.37 1.09 0.06 0.045 18
MSY one-way pol 1 0 1.34 1.06 0.20 0.037 7
MSY one-way pol 1 1 1.36 1.08 0.22 0.032 0
MSY one-way pol 1 ∞ 1.36 1.08 0.22 0.032 0
MSY one-way pol 1 0.90 1.06 1.03 0.10 0.248 37
MSY one-way pol 10 ∞ 0.90 1.06 1.03 0.10 0.248 37
MSY one-way pol 42 1.27 0 5 0.5 1 1.00 1.12 0.05 0.088 62
MSY one-way pol 10 1.27 0 5 0.5 1 ∞ 0 1.00 1.12 0.05 0.088 62
MSY one-way pol 1 1.46 1.20* 0.70* 1.00 1.13 0.20 0.066 48
MSY one-way pol 29 1.27 0 4 0.7 1 1.20* 0.70* 1.00 1.12 0.07 0.087 65
MSY random pol 1 0.79 1.01 1.03 0.21 0.234 49
MSY random pol 1 0 0.70 1.00 0.23 0.412 0
MSY random pol 1 4 0.70 0.99 0.08 0.428 13
MSY random pol 1 2.0 0.77 1.01 0.27 0.370 7
MSY random pol 1 1 0.70 1.00 0.23 0.415 0
MSY random pol 1 1.12 1.00 1.03 0.12 0.252 58
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY random pol 1 0.18 0.70 1.00 0.23 0.415 0
MSY random pol 13 1.11 0.50 1.01 1.02 0.11 0.249 59
MSY random pol 45 0.79 0 5 0.6 1 1.01 1.05 0.05 0.243 63
MSY random pol 10 0.79 0 5 0.6 1 ∞ 0 1.01 1.05 0.05 0.243 63
MSY random pol 1 0.86 1.20* 0.70* 1.00 1.04 0.20 0.243 35
MSY random pol 18 0.80 1 4 1.0 1 1.20* 0.70* 1.00 1.03 0.07 0.256 53

Parameter exploration for pollack with MSY-PA fitness function (with risk limit, see
Figure 9.8 in Chapter 9)

MSY-PA one-way pol 1 1.29 1.04 1.13 0.24 0.049 35
MSY-PA one-way pol 1 0 1.35 1.08 0.22 0.030 2
MSY-PA one-way pol 1 5 1.37 1.09 0.06 0.045 21
MSY-PA one-way pol 1 0 1.34 1.06 0.20 0.037 8
MSY-PA one-way pol 1 1 1.36 1.08 0.22 0.032 0
MSY-PA one-way pol 1 ∞ 1.36 1.08 0.22 0.032 0
MSY-PA one-way pol 1 0.63 1.34 1.07 0.22 0.046 4
MSY-PA one-way pol 10 ∞ 0.63 1.34 1.07 0.22 0.046 4
MSY-PA one-way pol 28 1.23 1 2 1.4 1 1.09 1.13 0.12 0.048 45
MSY-PA one-way pol 13 1.22 0 2 1.3 1 ∞ 0.07 1.08 1.13 0.12 0.042 49
MSY-PA one-way pol 1 1.34 1.20* 0.70* 1.10 1.13 0.20 0.049 38
MSY-PA one-way pol 15 1.21 1 3 1.6 1 1.20* 0.70* 1.15 1.14 0.10 0.047 45
MSY-PA random pol 1 0.48 1.69 0.94 0.20 0.051 82
MSY-PA random pol 1 0 0.70 1.00 0.23 0.412 0
MSY-PA random pol 1 4 0.70 0.99 0.08 0.428 3
MSY-PA random pol 1 2 0.77 1.01 0.27 0.370 0
MSY-PA random pol 1 1 0.70 1.00 0.23 0.415 0
MSY-PA random pol 1 1.12 1.00 1.03 0.12 0.252 7
MSY-PA random pol 1 0.18 0.70 1.00 0.23 0.415 0
MSY-PA random pol 23 1.12 0.34 1.00 1.03 0.12 0.253 7
MSY-PA random pol 43 0.46 0 5 0.8 1 1.76 0.94 0.05 0.048 84
MSY-PA random pol 10 0.46 0 5 0.1 1 ∞ 0 1.76 0.94 0.05 0.048 84
MSY-PA random pol 1 0.51 1.20* 0.70* 1.70 0.95 0.20 0.051 81
MSY-PA random pol 26 0.46 1 3 1.5 1 1.20* 0.70* 1.77 0.93 0.08 0.048 83

Optimisation with multiplier ((m) in Figure E.7)
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA one-way ang3 1 1.26 1.00 1.15 0.29 0.010 22
MSY-PA one-way rjc2 1 1.28 1.00 1.14 0.28 0.005 23
MSY-PA one-way smn 1 0.95 1.40 1.11 0.25 0.046 81
MSY-PA one-way wlf 1 1.40 1.00 1.14 0.25 0.013 35
MSY-PA one-way meg 1 1.52 1.00 1.07 0.24 0.043 52
MSY-PA one-way lin 1 1.29 1.00 1.16 0.26 0.047 33
MSY-PA one-way rjc 1 1.26 1.03 1.16 0.25 0.048 30
MSY-PA one-way syc 1 1.12 1.20 1.15 0.24 0.048 15
MSY-PA one-way sdv 1 1.29 1.00 1.16 0.26 0.046 34
MSY-PA one-way ang 1 1.17 1.14 1.15 0.24 0.048 22
MSY-PA one-way ang2 1 1.23 1.10 1.14 0.24 0.047 29
MSY-PA one-way pol 1 1.29 1.04 1.13 0.24 0.049 35
MSY-PA one-way had 1 1.11 1.26 1.08 0.22 0.050 10
MSY-PA one-way nep 1 1.21 1.20 1.10 0.22 0.048 25
MSY-PA one-way mut 1 1.01 1.50 1.05 0.23 0.048 1
MSY-PA one-way sbb 1 0.96 1.45 1.05 0.23 0.049 26
MSY-PA one-way ple 1 1.03 1.47 1.06 0.23 0.049 2
MSY-PA one-way syc2 1 0.95 1.54 1.09 0.23 0.048 84
MSY-PA one-way arg 1 0.99 1.48 1.10 0.24 0.048 1
MSY-PA one-way tur 1 1.05 1.41 1.05 0.23 0.048 5
MSY-PA one-way gut 1 0.95 1.49 1.04 0.24 0.049 60
MSY-PA one-way whg 1 0.73 1.97 0.91 0.29 0.050 76
MSY-PA one-way bll 1 0.68 1.89 0.94 0.27 0.048 78
MSY-PA one-way lem 1 0.87 1.70 0.99 0.24 0.049 83
MSY-PA one-way ane 1 0.71 2.08 0.88 0.30 0.049 74
MSY-PA one-way jnd 1 0.40 2.44 0.76 0.34 0.050 73
MSY-PA one-way sar 1 0.37 2.81 0.68 0.36 0.051 67
MSY-PA one-way her 1 0.38 2.80 0.68 0.35 0.047 67
MSY-PA one-way san 1 0.18 3.33 0.44 0.48 0.049 54
MSY-PA random ang3 1 0.11 2.43 0.26 0.20 0.054 54
MSY-PA random rjc2 1 0.12 2.38 0.33 0.20 0.054 56
MSY-PA random smn 1 0.41 2.27 0.68 0.20 0.051 67
MSY-PA random wlf 1 0.30 1.89 0.74 0.20 0.053 73
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA random meg 1 0.41 1.94 0.59 0.13 0.051 72
MSY-PA random lin 1 0.38 2.04 0.78 0.20 0.052 72
MSY-PA random rjc 1 0.40 2.04 0.82 0.20 0.051 73
MSY-PA random syc 1 0.46 2.08 0.84 0.20 0.052 72
MSY-PA random sdv 1 0.41 1.95 0.82 0.20 0.053 74
MSY-PA random ang 1 0.47 1.97 0.87 0.20 0.051 75
MSY-PA random ang2 1 0.47 1.82 0.93 0.20 0.051 79
MSY-PA random pol 1 0.48 1.69 0.94 0.20 0.051 82
MSY-PA random had 1 0.44 1.63 0.94 0.21 0.050 84
MSY-PA random nep 1 0.44 1.73 0.94 0.21 0.050 81
MSY-PA random mut 1 0.36 2.09 0.88 0.21 0.051 73
MSY-PA random sbb 1 0.44 1.84 0.93 0.22 0.051 80
MSY-PA random ple 1 0.42 2.06 0.89 0.22 0.049 75
MSY-PA random syc2 1 0.52 2.34 0.83 0.20 0.051 67
MSY-PA random arg 1 0.54 2.24 0.84 0.20 0.052 69
MSY-PA random tur 1 0.45 1.81 0.90 0.21 0.048 80
MSY-PA random gut 1 0.43 1.94 0.90 0.22 0.048 78
MSY-PA random whg 1 0.37 2.51 0.76 0.26 0.049 70
MSY-PA random bll 1 0.27 2.40 0.77 0.25 0.046 74
MSY-PA random lem 1 0.50 2.05 0.87 0.23 0.050 76
MSY-PA random ane 1 0.34 2.77 0.70 0.27 0.048 64
MSY-PA random jnd 1 0.14 3.22 0.53 0.29 0.044 60
MSY-PA random sar 1 0.15 3.46 0.49 0.32 0.052 56
MSY-PA random her 1 0.15 3.55 0.48 0.31 0.044 55
MSY-PA random san 1 0.07 3.88 0.29 0.42 0.036 48

Optimisation with all parameters ((n) in Figure E.7)
MSY-PA one-way ang3 33 1.08 0 4 0.6 2 ∞ 0.74 1.00 1.10 0.09 0.033 66
MSY-PA one-way rjc2 13 1.18 1 5 0.4 2 4.54 0.33 0.99 1.11 0.07 0.015 64
MSY-PA one-way smn 11 0.91 1 4 0.3 1 1.65 0.66 1.37 1.09 0.05 0.048 87
MSY-PA one-way wlf 28 1.30 0 4 0.9 1 ∞ 0.41 1.02 1.12 0.06 0.021 67
MSY-PA one-way meg 20 1.40 0 2 1.1 1 ∞ 0.33 1.02 1.05 0.11 0.046 70
MSY-PA one-way lin 28 1.10 0 5 0.8 1 ∞ 0.32 1.13 1.12 0.05 0.042 54
MSY-PA one-way rjc 28 1.16 0 3 1.2 1 ∞ 0.13 1.09 1.15 0.08 0.044 52
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA one-way syc 24 1.02 0 3 0.5 1 ∞ 0.21 1.28 1.11 0.07 0.044 34
MSY-PA one-way sdv 28 1.15 0 3 0.5 1 ∞ 0.21 1.07 1.13 0.07 0.046 58
MSY-PA one-way ang 13 1.15 0 3 1.4 1 ∞ 0.39 1.15 1.15 0.09 0.048 41
MSY-PA one-way ang2 39 1.12 0 3 1.1 1 ∞ 0.31 1.20 1.13 0.08 0.046 41
MSY-PA one-way pol 13 1.22 0 2 1.3 1 ∞ 0.07 1.08 1.13 0.12 0.042 49
MSY-PA one-way had 17 1.07 0 2 1.3 1 ∞ 0.06 1.29 1.09 0.12 0.047 24
MSY-PA one-way nep 10 1.21 1 1 1.4 1 ∞ 0.00 1.20 1.10 0.22 0.048 25
MSY-PA one-way mut 11 1.00 0 2 1.3 1 ∞ 0.00 1.51 1.07 0.13 0.045 10
MSY-PA one-way sbb 18 0.95 0 2 1.4 1 ∞ 0.16 1.47 1.07 0.13 0.046 34
MSY-PA one-way ple 18 1.04 0 2 1.3 1 ∞ 0.07 1.45 1.08 0.13 0.048 14
MSY-PA one-way syc2 13 0.93 1 3 0.2 1 ∞ 0.02 1.52 1.08 0.08 0.048 87
MSY-PA one-way arg 28 0.94 1 3 1.0 1 ∞ 0.26 1.52 1.07 0.08 0.048 19
MSY-PA one-way tur 30 1.02 0 2 0.8 1 ∞ 0.10 1.44 1.06 0.13 0.046 14
MSY-PA one-way gut 20 1.01 0 2 1.6 1 ∞ 0.20 1.40 1.09 0.15 0.046 67
MSY-PA one-way whg 14 0.87 0 1 1.3 1 ∞ 0.00 1.69 0.99 0.30 0.049 82
MSY-PA one-way bll 24 0.83 0 1 1.1 1 ∞ 0.16 1.62 1.01 0.28 0.048 84
MSY-PA one-way lem 15 0.98 0 2 1.7 1 ∞ 0.25 1.51 1.07 0.16 0.050 87
MSY-PA one-way ane 28 0.88 0 1 1.3 1 ∞ 0.13 1.74 0.98 0.33 0.048 81
MSY-PA one-way jnd 43 0.49 0 2 0.8 1 ∞ 0.19 2.16 0.86 0.24 0.047 80
MSY-PA one-way sar 36 0.40 0 2 0.7 1 ∞ 0.32 2.69 0.74 0.24 0.044 71
MSY-PA one-way her 28 0.55 0 1 0.6 1 ∞ 0.25 2.24 0.83 0.39 0.035 76
MSY-PA one-way san 24 0.28 0 1 0.6 1 ∞ 0.15 2.75 0.58 0.54 0.045 63
MSY-PA random ang3 21 0.11 1 4 1.6 1 ∞ 0.08 2.45 0.26 0.06 0.053 57
MSY-PA random rjc2 29 0.12 1 3 1.9 1 ∞ 0.05 2.40 0.33 0.07 0.053 60
MSY-PA random smn 19 0.44 1 5 1.6 3 2.58 0.34 2.22 0.73 0.10 0.049 71
MSY-PA random wlf 37 0.32 1 4 1.6 3 ∞ 0.14 1.88 0.79 0.13 0.051 77
MSY-PA random meg 37 0.40 0 3 1.6 1 ∞ 0.19 1.95 0.60 0.06 0.050 74
MSY-PA random lin 20 0.37 1 4 1.4 1 ∞ 0.32 2.10 0.78 0.06 0.050 75
MSY-PA random rjc 51 0.41 1 4 1.6 1 ∞ 0.25 2.03 0.85 0.06 0.048 77
MSY-PA random syc 27 0.48 1 4 1.8 2 ∞ 0.37 2.05 0.88 0.10 0.047 77
MSY-PA random sdv 33 0.41 1 4 1.8 2 ∞ 0.25 1.99 0.84 0.09 0.047 77
MSY-PA random ang 14 0.48 1 4 1.4 1 ∞ 0.25 1.96 0.90 0.06 0.050 79
MSY-PA random ang2 59 0.47 1 4 1.9 1 ∞ 0.22 1.85 0.95 0.06 0.047 82
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA random pol 10 0.46 0 5 0.1 1 ∞ 0.00 1.76 0.94 0.05 0.048 84
MSY-PA random had 15 0.42 0 2 0.7 1 ∞ 0.23 1.67 0.94 0.11 0.047 85
MSY-PA random nep 33 0.42 0 2 0.9 1 ∞ 0.16 1.77 0.94 0.11 0.047 83
MSY-PA random mut 33 0.35 0 3 0.7 1 ∞ 0.17 2.13 0.89 0.09 0.047 76
MSY-PA random sbb 14 0.45 0 2 1.0 1 ∞ 0.07 1.80 0.95 0.12 0.051 82
MSY-PA random ple 24 0.41 0 3 0.8 1 ∞ 0.25 2.09 0.90 0.09 0.046 77
MSY-PA random syc2 28 0.53 1 4 0.6 1 ∞ 0.24 2.32 0.85 0.06 0.048 71
MSY-PA random arg 26 0.55 1 4 1.3 1 ∞ 0.25 2.22 0.87 0.06 0.050 73
MSY-PA random tur 15 0.45 0 2 1.2 1 ∞ 0.23 1.81 0.92 0.12 0.045 82
MSY-PA random gut 18 0.42 0 2 1.1 1 ∞ 0.58 1.96 0.91 0.13 0.043 80
MSY-PA random whg 19 0.40 0 2 0.9 1 ∞ 0.23 2.37 0.82 0.17 0.047 74
MSY-PA random bll 38 0.33 0 1 0.8 1 ∞ 0.17 2.10 0.86 0.26 0.046 79
MSY-PA random lem 28 0.50 0 3 0.6 1 ∞ 0.20 2.05 0.89 0.10 0.050 78
MSY-PA random ane 21 0.38 0 2 0.9 1 ∞ 0.20 2.57 0.77 0.17 0.047 69
MSY-PA random jnd 24 0.22 0 1 0.5 1 ∞ 0.21 2.61 0.70 0.33 0.046 70
MSY-PA random sar 20 0.22 0 1 1.3 1 ∞ 0.03 2.89 0.64 0.35 0.037 66
MSY-PA random her 20 0.25 0 1 0.8 1 ∞ 0.13 2.78 0.66 0.35 0.048 67
MSY-PA random san 19 0.11 0 1 0.7 1 ∞ 0.08 3.39 0.40 0.46 0.033 56

Optimisation with multiplier with fixed conditional uncertainty caps ((g) in Figure E.7
and Figure 9.9 in Chapter 9)

MSY-PA one-way ang3 1 1.39 1.20* 0.70* 1.00 1.15 0.20 0.013 38
MSY-PA one-way rjc2 1 1.40 1.20* 0.70* 1.00 1.13 0.20 0.007 40
MSY-PA one-way smn 1 1.03 1.20* 0.70* 1.43 1.10 0.20 0.047 3
MSY-PA one-way wlf 1 1.54 1.20* 0.70* 1.00 1.15 0.20 0.016 47
MSY-PA one-way meg 1 1.63 1.20* 0.70* 1.02 1.08 0.20 0.047 56
MSY-PA one-way lin 1 1.37 1.20* 0.70* 1.03 1.15 0.20 0.047 43
MSY-PA one-way rjc 1 1.36 1.20* 0.70* 1.05 1.16 0.20 0.049 41
MSY-PA one-way syc 1 1.21 1.20* 0.70* 1.22 1.15 0.20 0.048 26
MSY-PA one-way sdv 1 1.37 1.20* 0.70* 1.04 1.15 0.20 0.047 43
MSY-PA one-way ang 1 1.23 1.20* 0.70* 1.20 1.14 0.20 0.048 29
MSY-PA one-way ang2 1 1.31 1.20* 0.70* 1.14 1.14 0.20 0.048 36
MSY-PA one-way pol 1 1.34 1.20* 0.70* 1.10 1.13 0.20 0.049 38
MSY-PA one-way had 1 1.09 1.20* 0.70* 1.38 1.08 0.20 0.051 5
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA one-way nep 1 1.23 1.20* 0.70* 1.28 1.10 0.20 0.048 24
MSY-PA one-way mut 1 1.03 1.20* 0.70* 1.63 1.04 0.20 0.048 2
MSY-PA one-way sbb 1 0.94 1.20* 0.70* 1.63 1.04 0.20 0.049 17
MSY-PA one-way ple 1 1.06 1.20* 0.70* 1.58 1.05 0.20 0.050 4
MSY-PA one-way syc2 1 1.05 1.20* 0.70* 1.53 1.10 0.20 0.048 6
MSY-PA one-way arg 1 1.07 1.20* 0.70* 1.51 1.10 0.20 0.049 9
MSY-PA one-way tur 1 1.03 1.20* 0.70* 1.58 1.03 0.20 0.049 1
MSY-PA one-way gut 1 0.94 1.20* 0.70* 1.68 1.01 0.20 0.050 57
MSY-PA one-way whg 1 0.71 1.20* 0.70* 2.37 0.85 0.20 0.050 71
MSY-PA one-way bll 1 0.56 1.20* 0.70* 2.49 0.80 0.20 0.052 68
MSY-PA one-way lem 1 0.85 1.20* 0.70* 1.94 0.94 0.20 0.051 79
MSY-PA one-way ane 1 0.71 1.20* 0.70* 2.49 0.82 0.20 0.050 70
MSY-PA one-way jnd 1 0.85 1.20* 0.70* 1.01 0.21 0.20 0.470 16
MSY-PA one-way sar 1 1.01 1.20* 0.70* 1.02 0.20 0.20 0.476 1
MSY-PA one-way her 1 0.95 1.20* 0.70* 1.04 0.24 0.20 0.473 4
MSY-PA one-way san 1 0.21 1.20* 0.70* 3.89 0.35 0.20 0.050 54
MSY-PA random ang3 1 0.04 1.20* 0.70* 2.65 0.10 0.20 0.055 43
MSY-PA random rjc2 1 0.03 1.20* 0.70* 2.70 0.09 0.20 0.055 43
MSY-PA random smn 1 0.44 1.20* 0.70* 2.26 0.70 0.20 0.051 66
MSY-PA random wlf 1 0.32 1.20* 0.70* 1.89 0.76 0.20 0.054 72
MSY-PA random meg 1 0.44 1.20* 0.70* 1.93 0.60 0.13 0.052 72
MSY-PA random lin 1 0.38 1.20* 0.70* 2.11 0.76 0.20 0.052 70
MSY-PA random rjc 1 0.43 1.20* 0.70* 2.01 0.84 0.20 0.053 72
MSY-PA random syc 1 0.48 1.20* 0.70* 2.10 0.85 0.20 0.052 71
MSY-PA random sdv 1 0.42 1.20* 0.70* 1.99 0.82 0.20 0.053 72
MSY-PA random ang 1 0.50 1.20* 0.70* 1.97 0.88 0.20 0.052 75
MSY-PA random ang2 1 0.50 1.20* 0.70* 1.82 0.94 0.20 0.050 79
MSY-PA random pol 1 0.51 1.20* 0.70* 1.70 0.95 0.20 0.051 81
MSY-PA random had 1 0.46 1.20* 0.70* 1.69 0.94 0.20 0.051 82
MSY-PA random nep 1 0.46 1.20* 0.70* 1.78 0.94 0.20 0.051 79
MSY-PA random mut 1 0.37 1.20* 0.70* 2.24 0.85 0.20 0.051 69
MSY-PA random sbb 1 0.45 1.20* 0.70* 1.97 0.91 0.20 0.050 76
MSY-PA random ple 1 0.44 1.20* 0.70* 2.15 0.88 0.20 0.051 71
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA random syc2 1 0.57 1.20* 0.70* 2.29 0.86 0.20 0.051 68
MSY-PA random arg 1 0.58 1.20* 0.70* 2.23 0.86 0.20 0.051 70
MSY-PA random tur 1 0.45 1.20* 0.70* 1.96 0.87 0.20 0.050 76
MSY-PA random gut 1 0.44 1.20* 0.70* 2.09 0.87 0.20 0.050 74
MSY-PA random whg 1 0.36 1.20* 0.70* 2.86 0.70 0.20 0.051 60
MSY-PA random bll 1 0.21 1.20* 0.70* 2.97 0.62 0.20 0.052 63
MSY-PA random lem 1 0.51 1.20* 0.70* 2.22 0.84 0.20 0.050 71
MSY-PA random ane 1 0.34 1.20* 0.70* 3.12 0.65 0.20 0.050 53
MSY-PA random jnd 1 0.51 1.20* 0.70* 1.02 0.24 0.20 0.478 17
MSY-PA random sar 1 0.62 1.20* 0.70* 1.00 0.18 0.20 0.485 16
MSY-PA random her 1 0.58 1.20* 0.70* 1.00 0.24 0.20 0.486 17
MSY-PA random san 1 1.95 1.20* 0.70* 1.01 0.09 0.20 0.483 17

Optimisation with all parameters with fixed conditional uncertainty caps ((h) in Figure
E.7 and Figure 9.9 in Chapter 9)

MSY-PA one-way ang3 42 1.09 0 5 0.7 1 1.20* 0.70* 1.03 1.11 0.04 0.016 67
MSY-PA one-way rjc2 24 1.14 0 4 0.6 1 1.20* 0.70* 1.01 1.11 0.05 0.011 69
MSY-PA one-way smn 24 0.90 0 4 1.2 1 1.20* 0.70* 1.40 1.09 0.06 0.047 27
MSY-PA one-way wlf 24 1.32 1 4 0.5 1 1.20* 0.70* 1.00 1.12 0.06 0.04 73
MSY-PA one-way meg 22 1.53 0 4 1.5 1 1.20* 0.70* 1.01 1.09 0.07 0.046 74
MSY-PA one-way lin 22 1.17 0 3 1.2 1 1.20* 0.70* 1.07 1.14 0.08 0.046 58
MSY-PA one-way rjc 19 1.15 0 3 1.2 1 1.20* 0.70* 1.10 1.14 0.08 0.048 54
MSY-PA one-way syc 25 1.05 0 3 1.3 1 1.20* 0.70* 1.26 1.13 0.08 0.044 39
MSY-PA one-way sdv 34 1.11 0 3 1.1 1 1.20* 0.70* 1.12 1.12 0.08 0.045 53
MSY-PA one-way ang 24 1.05 0 3 1.3 1 1.20* 0.70* 1.28 1.12 0.09 0.044 37
MSY-PA one-way ang2 18 1.19 0 3 1.4 1 1.20* 0.70* 1.14 1.15 0.10 0.046 49
MSY-PA one-way pol 15 1.21 1 3 1.6 1 1.20* 0.70* 1.15 1.14 0.10 0.047 45
MSY-PA one-way had 28 1.13 0 2 1.4 1 1.20* 0.70* 1.27 1.10 0.14 0.05 27
MSY-PA one-way nep 24 1.14 0 4 1.5 1 1.20* 0.70* 1.28 1.11 0.08 0.048 39
MSY-PA one-way mut 31 1.02 0 3 1.6 1 1.20* 0.70* 1.53 1.07 0.12 0.048 18
MSY-PA one-way sbb 18 0.97 0 3 1.7 1 1.20* 0.70* 1.49 1.08 0.12 0.048 35
MSY-PA one-way ple 30 1.02 0 3 1.5 1 1.20* 0.70* 1.51 1.07 0.12 0.049 19
MSY-PA one-way syc2 24 0.96 1 4 1.4 1 1.20* 0.70* 1.51 1.10 0.07 0.048 24
MSY-PA one-way arg 21 0.96 0 4 1.4 1 1.20* 0.70* 1.52 1.09 0.07 0.047 23
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA one-way tur 13 1.08 0 2 1.4 1 1.20* 0.70* 1.44 1.07 0.17 0.048 18
MSY-PA one-way gut 21 1.09 0 1 1.5 1 1.20* 0.70* 1.48 1.07 0.20 0.046 65
MSY-PA one-way whg 10 0.71 1 1 1.4 1 1.20* 0.70* 2.37 0.85 0.20 0.05 71
MSY-PA one-way bll 10 0.56 1 1 1.4 1 1.20* 0.70* 2.49 0.80 0.20 0.052 68
MSY-PA one-way lem 10 1.00 0 1 1.4 1 1.20* 0.70* 1.67 1.02 0.20 0.049 84
MSY-PA one-way ane 17 0.88 0 1 1.4 1 1.20* 0.70* 2.11 0.92 0.20 0.048 78
MSY-PA one-way jnd 14 0.45 0 3 0.4 3 1.20* 0.70* 1.01 0.40 0.20 0.481 19
MSY-PA one-way sar 29 0.46 0 3 0.5 3 1.20* 0.70* 0.99 0.37 0.20 0.487 3
MSY-PA one-way her 20 0.46 0 1 1.0 1 1.20* 0.70* 3.00 0.68 0.20 0.05 59
MSY-PA one-way san 24 0.28 0 1 1.0 1 1.20* 0.70* 3.52 0.46 0.20 0.05 60
MSY-PA random ang3 18 0.10 1 4 1.9 1 1.20* 0.70* 2.48 0.24 0.06 0.053 55
MSY-PA random rjc2 24 0.11 1 4 1.9 1 1.20* 0.70* 2.43 0.31 0.06 0.053 57
MSY-PA random smn 24 0.47 1 4 1.9 2 1.20* 0.70* 2.16 0.76 0.10 0.048 72
MSY-PA random wlf 20 0.37 1 4 1.8 2 1.20* 0.70* 1.78 0.84 0.12 0.053 77
MSY-PA random meg 48 0.40 0 3 1.5 1 1.20* 0.70* 1.96 0.60 0.06 0.051 74
MSY-PA random lin 26 0.41 1 3 1.7 1 1.20* 0.70* 1.97 0.83 0.08 0.052 76
MSY-PA random rjc 24 0.44 1 4 1.8 1 1.20* 0.70* 1.94 0.88 0.06 0.05 79
MSY-PA random syc 24 0.52 1 4 1.7 2 1.20* 0.70* 1.95 0.91 0.11 0.052 77
MSY-PA random sdv 18 0.41 1 4 1.7 1 1.20* 0.70* 1.98 0.84 0.06 0.05 77
MSY-PA random ang 29 0.50 1 3 1.7 1 1.20* 0.70* 1.91 0.92 0.08 0.051 79
MSY-PA random ang2 24 0.47 1 3 1.6 1 1.20* 0.70* 1.84 0.94 0.08 0.049 81
MSY-PA random pol 26 0.46 1 3 1.5 1 1.20* 0.70* 1.77 0.93 0.08 0.048 83
MSY-PA random had 24 0.41 0 4 1.4 1 1.20* 0.70* 1.74 0.93 0.07 0.049 84
MSY-PA random nep 14 0.42 0 4 1.4 1 1.20* 0.70* 1.81 0.94 0.07 0.049 82
MSY-PA random mut 46 0.34 0 3 0.8 1 1.20* 0.70* 2.20 0.87 0.10 0.05 72
MSY-PA random sbb 10 0.45 1 1 1.4 1 1.20* 0.70* 1.97 0.91 0.20 0.05 76
MSY-PA random ple 26 0.42 0 2 1.1 1 1.20* 0.70* 2.11 0.89 0.15 0.048 74
MSY-PA random syc2 18 0.54 1 4 1.5 1 1.20* 0.70* 2.28 0.86 0.06 0.049 72
MSY-PA random arg 15 0.56 1 4 1.6 1 1.20* 0.70* 2.19 0.88 0.06 0.05 74
MSY-PA random tur 48 0.41 0 3 1.1 1 1.20* 0.70* 1.97 0.88 0.11 0.044 78
MSY-PA random gut 10 0.44 1 1 1.4 1 1.20* 0.70* 2.09 0.87 0.20 0.05 74
MSY-PA random whg 10 0.36 1 1 1.4 1 1.20* 0.70* 2.86 0.70 0.20 0.051 60
MSY-PA random bll 18 0.33 0 1 1.3 1 1.20* 0.70* 2.40 0.81 0.20 0.049 75
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Table E.1: (continued).

Fitness
function

Fishing
history

Stock Gener-
ations

x n0 n1 w v uu ul SSB Catch ICV Risk Fitness im-
provement
[%]

MSY-PA random lem 10 0.51 1 1 1.4 1 1.20* 0.70* 2.22 0.84 0.20 0.05 71
MSY-PA random ane 22 0.37 0 2 0.9 1 1.20* 0.70* 2.80 0.73 0.20 0.052 59
MSY-PA random jnd 27 0.52 0 2 0.7 1 1.20* 0.70* 1.02 0.41 0.20 0.47 19
MSY-PA random sar 18 0.49 0 3 0.7 3 1.20* 0.70* 1.00 0.29 0.20 0.486 18
MSY-PA random her 18 0.58 0 2 0.6 2 1.20* 0.70* 1.00 0.32 0.20 0.485 18
MSY-PA random san 10 1.95 1 1 1.4 1 1.20* 0.70* 1.01 0.09 0.20 0.483 17
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E.3.2 Figures
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Figure E.2: Realised catch of a pure harvest rate management procedure. Shown is the catch
relative to MSY, averaged over three implementation periods (10, 50, and 100 years). The
stock IDs correspond to the ones defined in Table 5.1 in Chapter 5. Stocks are sorted by von
Bertalanffy individual growth rate k (unit: year−1). The colour scale is standardised for these
and the following plots in this Figure. (Figure continued)
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Figure E.2: (continued).
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Figure E.2: (continued).
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Figure E.2: (continued).
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Figure E.2: (continued).
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jnd (k = 0.47) sar (k = 0.6) her (k = 0.61) san (k = 1)
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sbb (k = 0.22) ple (k = 0.23) syc2 (k = 0.23) arg (k = 0.23) tur (k = 0.32)

ang2 (k = 0.18) pol (k = 0.19) had (k = 0.2) nep (k = 0.2) mut (k = 0.21)

lin (k = 0.14) rjc (k = 0.14) syc (k = 0.15) sdv (k = 0.15) ang (k = 0.18)
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Figure E.3: Fishery selectivity and maturity for the simulated stocks. The stock IDs correspond
to the ones defined in Table 5.1 in Chapter 5. Stocks are sorted by von Bertalanffy individual
growth rate k (unit: year−1).
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Figure E.4: Index selectivities for pollack.
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Figure E.5: Impact of the index selectivity on the harvest rate rule for pollack and the three
fishing histories (a-c). The projections (left) show the first 10 years, the summary boxplots
(right) the full 50-year projections.
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Figure E.6: Performance of the harvest rate rule when including single or combinations of the
rule’s parameters into the optimisation for pollack. Shown are optimisation for the summary
statistics without a risk limit (a) and with a risk limit (b). The following parameter combinations
were tested: multiplier (x), time lag (n0), index range (n1), index trigger buffer (w), interval
(v), upper cap (uu), lower cap (ul), both caps (uu, ul), all parameters without the caps (x, n0,
n1, w, v), all parameters (x, n0, n1, w, v, uu, ul), multiplier with conditional caps (x, uu = 1.2,
ul = 0.7), and all parameters with conditional caps (x, n0, n1, w, v, uu = 1.2, ul = 0.7).
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Figure E.7: Performance improvement of the harvest rate rule for all stocks, achieved through
optimisation with the genetic algorithm (based on (ϕMSY-PA)) and a comparison with other
management options. Shown are a “zero-fishing” option (a), the 2 over 3 rule (b, from Fischer
et al., 2021a, see Chapter 7), the rfb rule (c-e, i-k, from Fischer et al., 2021b, see Chapter 8)
and the harvest rate rule (f-h, l-n). The options a-h are the same as those of Figure 9.9 in
Chapter 9. For the rfb and harvest rate rules, three options are shown; the default rules (c,
i, f, l, not optimised), optimisation with a multiplier (d, j, g, m), and optimisations where all
parameters are included (e, k, h, n). Options marked with * included the conditional uncertainty
cap (+20%, −30%, c-e, f-h). Shorter bars (less negative fitness) indicate better performance.
SSB and catch can be above or below the optimisation target (see Figure E.6), indicated by “+”
and “−”. The parameterisation where the risk is above 5% are easily identifiable as the bars
with large risk-PA elements (in red). The stock IDs correspond to the ones defined in Table 5.1
in Chapter 5. (Figure continued on next page)
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Figure E.7: (continued).
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Figure E.7: (continued).
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Figure E.7: (continued).
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Figure E.7: (continued).
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Appendix F

Appendix to Chapter 11

The following is an Appendix to Chapter 11 and based on the supplementary material prepared

for Fischer et al. (n.d.):

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D. & Kell, L. T. (n.d.). Risk equivalence

in data-limited and data-rich fisheries management: an example based on the ICES advice

framework (manuscript submitted to Fish and Fisheries)

F.1 Operating model

F.1.1 Operating model conditioning

The conditioning of the operating models (OMs) for all three stocks (plaice, cod, and herring)

followed the approach set out by ICES (2019h). This means that the OMs were based on

the model fits of the state-space assessment model SAM (Nielsen & Berg, 2014) to data and

included SAM estimates of uncertainty (parameter uncertainty, process error, observation error).

The uncertainty was implemented into the OM by generating 1,000 self-consistent simulation

replicates. Each of these replicates represented one parameter set derived by the sampling from

the variance-covariance matrix of the SAM model fit (ICES, 2019h). The baseline OMs were

based on model fits similar to the stock assessments used by ICES (see Table 11.1 in Chapter

11). In the alternative OMs, representing alternative assumptions (e.g. natural mortality,

recruitment, etc.), the SAM model was fit again and the process described above was repeated

independently.
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F.1.2 Population dynamics

Population dynamics were simulated with age-structured OMs. Population dynamics mimicked

the internal dynamics of the state-space SAM model (Nielsen & Berg, 2014). Stock numbers

were calculated as

Na,y,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ry,i a = 1

Na−1,y−1,i e−Fa−1,y−1,i−Ma−1,y−1,i eεa,y,i 1 < a < A(︂
Na−1,y−1,i e−Fa−1,y−1,i−Ma−1,y−1,i + Na,y−1,i e−Fa,y−1,i−Ma,y−1,i

)︂
eεa,y,i a = A

(F.1)

where Na,y,i are stock numbers for age a, year y and simulation replicate i, with a = 1 being

the first age class, A the last age class (plusgroup), R are recruits, F is the fishing mortality, M

the natural mortality, and ε the multivariate normal survival process error (ε ∼ N(0, Σ), where

Σ is estimated by SAM).

The recruitment models for the three stocks are illustrated in Figure F.1.

Figure F.1: Recruitment models of the baseline operating models for the three stocks. Red points
indicate the medians of the SSB-recruitment pairs on which the stock-recruitment models were
conditioned. The thin black curves represent the recruitment models for the 1000 simulation
replicates and the red curve represents a recruitment model based on the medians of the model
parameters.

Recruitment R was modelled with a Beverton-Holt model for plaice:

Ry,i = α SSBy,i

β + SSBy,i
eγy,i , (F.2)
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where γ is the recruitment process error (recruitment residuals). Recruitment residuals are

derived by sampling from the historical residuals (smoothed with kernel density smoother) and

can include auto-correlation if significant for the historical residuals (see Chapter 11 for details

and illustration). For cod and herring, recruitment was modelled with a segmented regression

(hockey-stick) model:

Ry,i =

⎧⎪⎪⎨⎪⎪⎩
α SSBy,i eγy,i SSBy,i ≤ β

α β eγy,i SSBy,i > β,

(F.3)

with γ as above for Equation (F.2).

Catch numbers were calculated following the Baranov catch equation (Sharov, 2021):

Ca,y,i = Fa,y,i

Fa,y,i + Ma,y,i
Na,y,i

(︂
1 − e−Fa,y,i−Ma,y,i

)︂
(F.4)

F.1.3 Biological data and fisheries selectivity

Biological data (weights at age for the stock and catch, natural mortality, and maturity) of

the OM for the historical period (for which real data existed and are used in the ICES stock

assessments) were identical to those used in the stock assessment and the same for each simu-

lation replicate. Time-varying fishery selectivity (assuming a single fleet) is estimated by SAM.

Consequently, the selectivity differed by simulation replicate in the historical period.

For the projected period (20 years) in the MSE, variability was introduced for biological

parameters and fishery selectivity by resampling from the historical period. Values were res-

ampled from the last five historical years for plaice and cod (ICES, 2015b, 2021b) and from the

last 10 years for herring (ICES, 2021g), following decisions by ICES expert groups.

The resampling process was implemented by randomly selecting a year from the pool of

years (last 5 or 10 historical years), and taking all biological parameters for all ages in this year,

so that possible correlations between ages or different biological parameters were maintained.

This process was repeated for fishery selectivity, independently for each simulation replicate and

separate from the biological resampling.

F.1.4 Observations

Observations were generated from the OMs and passed to the management procedure (MP). The

data generated by OMs for the historical period were identical to the data observed in reality.
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For the projection years, the error structure from SAM was used to model the observations,

and these observations were added to the historical observations. All OM uncertainty estimates

(residuals) were generated before the simulations, so that they were identical in all simulations

of the same OM to facilitate comparisons between different MPs.

Catch observations

Catch observations were based on the operating model catch numbers of Equation (F.4) and

included an observation error term:

Cobs
a,y,i = Ca,y,i eεa,y,i , (F.5)

with εa,y,i ∼ N(0, σ2
a,i) and σ being the observation standard deviation estimated by SAM.

The total catch CT was derived by multiplying catch numbers with the individual weight

(W C) and aggregating over all OM age classes:

CT
y,i,s =

A∑︂
a=1

Cobs
a,y,i W C

a,y,i,s. (F.6)

Indices

Survey index observations J were generated from the OM with

Ja,y,i,s = qa,y,i,s Na,y,i e−ts(Fa,y,i+Ma,y,i) eεa,y,i,s , (F.7)

where s is the index, q the catchability, t the timing of the survey in the year, and εa,y,i,s ∼

N(0, σ2
a,y,s) the observation error with standard deviation σ estimated by SAM.

Biomass indices I were generated from the surveys with

Iy,i,s =
amax,s∑︂

a=amin,s

Ja,y,i,s W I
a,y,i,s, (F.8)

where amin and amin are the minimum and maximum ages for survey s, J the observed index

values from Equation (F.7), and W I the weights at age in the index.
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Length data

The OMs were age-structured and did not use lengths internally. However, the data-limited

management procedures (MPs) required length data from the catch. Therefore, the age fre-

quencies of the catch were converted into length frequencies with stock-specific age-length keys

(ALKs). The ALKs describe the distribution of lengths for each age class of the OM. These

ALKs were applied to the catch at age data and the catch numbers aggregated by length class

to generate the catch at length distribution. For historical years for which yearly ALKs were

available, these were used. For the remaining historical years, the available ALKs were combined

into a pooled ALK. For the projected years in the MSE, length distributions were derived by

randomly choosing from the available ALKs, separately for each simulation year and replicate.

The observed length distributions were generated by sampling from the OM length distri-

bution (described in the previous paragraph). In each year, 2,000 length samples were drawn,

which is a typical sampling level for plaice in previous years (ICES, 2021o).

Subsequently, the mean length of the catch L̄ was calculated as the average of the length

classes (L) above the length of first capture (Lc, see section F.2.1), weighted by the number of

fish in these length classes (CL):

Ly =
∑︁

L>Lc
L CL,y∑︁

L>Lc
CL,y

. (F.9)

Biological data

Biological data (weights at age, M , maturity, etc.) was passed from the OM to the MP. For the

historical period (prior to implementing the MPs), the biological data passed to the MP was

identical to those observed in reality. For the projection period, the biological data were the

average of the values of those years from which the OM biological values were sampled (last 5

historical years for plaice and cod, last 10 historical years for herring).

For the alternative OMs, the MP received biological data from the baseline OM.

F.1.5 Alternative operating models

A range of alternative OMs was created to cover different assumptions made in the conditioning

of the baseline OM (see Table 11.3 in Chapter 11).

• Recruitment
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In the alternative recruitment OMs, the only difference from the baseline OM was the

definition of the recruitment model.

– Recruitment failure (ID: R: failure) - plaice, cod & herring

Reduced recruitment in the first five years of projection (2021-2025) by 90%.

– Higher recruitment (ID: R: higher) - cod & herring

Recruitment model fitted to a longer historical period covering larger recruitment

values (1988-2021 instead of 1998-2021 for cod, 1947-2021 instead of 2002-2021 for

herring).

– No auto-correlation of recruitment (ID: R: no AC ) - plaice

The default plaice recruitment model included lag-1 auto-correlated recruitment re-

siduals (ρ = 0.6). In this alternative OM, the auto-correlation was turned off.

• Natural mortality (M)

In these OMs, M in the stock assessment input data was changed, the SAM model fit to

these data, and the OM conditioned on this alternative model.

– Higher and lower M (ID: M : high; M : low) - plaice

In the baseline OM for plaice, M was identical for all ages (M = 0.12). In M : high,

M was increased by 50% to M = 0.18, and in M : low reduced by 50% to M = 0.06.

– Age-dependent M (ID: M: Gislason) - plaice

The age-invariant M = 0.12 for plaice was replaced by age-specific values. This was

achieved by following Equation 2 of Gislason et al. (2010):

ln(ML) = 0.55 − 1.61 ln(L) + 1.44 ln(L∞) + ln(k), (F.10)

which defines M by length (L) with the von Bertalanffy growth parameters L∞ and

k. Substituting the von Bertalanffy growth equation

La = L∞
(︂
1 − e−k(a−a0)

)︂
, (F.11)

into Equation (F.10) allows the determination of M by age. Stock-specific von Ber-

talanffy growth parameters were used (see Table F.2).
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– Density-dependent M (ID: M : dens. dep.) - cod

M can be split into two elements, the residual mortality (M1) and the predation

mortality (M2). M for cod is regularly updated based on multispecies analyses,

which also include a cannibalism component in M2. Cannibalism can impact M of

young cod. This OM adapted M for cod ages 1-3 based on the size of the stock,

following the multispecies analysis of ICES (2017c), and as parameterised by ICES

(2019h). See ICES (2019h) for details.

– Remove migration correction of M (ID: M : no migr.) - cod

In the current ICES cod assessment, M for ages 3-6 is inflated to account for an

assumed migration of older fish out of the stock area (ICES, 2021b, 2021p). In this

OM, this migration correction was removed, both for the stock assessment on which

the OM is conditioned, and for the projection in the MSE.

• Catch

The OMs were based on the total catch (landings and discards) and MPs adjusted total

catch.

– Assume 100% discard survival (ID: Catch: no disc.) - plaice

This OM assumed that discarding occurs but all discarded fish survived. This meant

that the OM stock was conditioned on a stock assessment which included only land-

ings and no discards. However, the data passed to the MPs included discards and

the catch advice is set for total catch.

The alternative assumptions only affected the processes in the OMs but were not passed to

the MPs. This meant there was a mismatch between the OMs and MPs, which could be used

to test the robustness of the MPs to misspecifications.

A comparison of the alternative OMs is illustrated in Figure F.2 and Figure F.3 shows the

corresponding recruitment models.
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Figure F.2: Comparison of the alternative operating models and comparison to ICES assess-
ments. The catch of the ICES assessment (red dashed curve) is the model input. Shaded areas
are 50% and 90% confidence intervals of the OMs. Horizontal dashed lines indicate MSY refer-
ence values and horizontal dotted lines Blim. (Figure continued)
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Figure F.2: (continued).
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Figure F.3: Recruitment models of the alternative operating models for the three stocks. Shown
are the median SSB-recruitment pairs (points) and the median recruitment models (curves). For
the recruitment failure scenario, the dashed curves indicate the recruitment model during the
years of recruitment failure and the solid curves the recruitment model for the remaining years.

F.1.6 Operating model reference points

The estimation of maximum sustainable yield (MSY) reference points for all OMs is illustrated

in Figure F.4 and the results are listed in Table F.1. MSY estimates were achieved by a 100-year

projection with constant F and maximising the long-term catch (median of last 10 years).
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Figure F.4: Visualisation of the MSY estimation for all stocks and operating models. The points
are the long-term averages (median of the last 10 years of a 100-year stochastic projection), the
blue curves are a loess smoother fitted to these values. MSY estimates are highlighted with the
red vertical lines.
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Table F.1: Reference points for all operating models. B0 and R0 are virgin (unfished) spawning stock biomass (SSB) and recruitment; FMSY, MSY
BMSY, and RMSY are fishing mortality, catch, SSB, and recruitment at MSY; and Blim is the biomass (SSB) limit reference point.

stock Operating model B0 [t] R0 [1000] FMSY MSY [t] BMSY [t] RMSY [1000] Blim [t]
Plaice baseline 38,340 6,887 0.167 1,703 10,005 6,570 2,119
Plaice R: failure 38,340 6,887 0.167 1,703 10,005 6,570 2,119
Plaice R: no AC 38,756 6,847 0.169 1,752 10,150 6,535 2,119
Plaice M: low 83,294 5,797 0.104 2,339 21,063 5,700 1,572
Plaice M: high 24,727 8,344 0.214 1,419 6,768 7,561 3,082
Plaice M: Gislason 26,915 13,919 0.182 1,363 7,565 12,106 5,229
Plaice Catch: no disc. 29,141 5,526 0.178 1,514 6,834 5,139 2,199
Cod baseline 415,979 249,285 0.430 55,391 90,187 247,224 62,734
Cod R: failure 415,979 249,285 0.430 55,391 90,187 247,224 62,734
Cod R: higher 650,837 340,640 0.481 86,413 122,305 338,698 70,629
Cod M: dens. dep. 254,704 249,285 0.438 53,401 85,125 242,638 62,734
Cod M: no migr. 908,879 241,923 0.456 63,510 141,781 241,923 74,640
Herring baseline 3,621,774 23,908,255 0.367 403,512 1,052,763 23,273,644 874,198
Herring R: failure 3,621,774 23,908,255 0.367 403,512 1,052,763 23,273,644 874,198
Herring R: higher 4,999,762 32,076,803 0.394 555,244 1,338,623 31,107,313 874,198
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F.2 Application of empirical management procedures

F.2.1 Life-history parameters and length reference points

Length-based reference points are listed in Table F.2.

The length at first capture Lc was calculated following ICES (2012e) as the first length class

where the abundance is at or above half of the abundance of the length class with the highest

abundance (mode).

The MSY proxy length LF =M was calculated following Beverton and Holt (1957) and as

derived by Jardim et al. (2015):

LF =M = 0.75Lc + 0.25L∞. (F.12)

This equation assumes a ratio of natural mortality (M) to the von Bertalanffy growth parameter

(k) M/k = 1.5 and that fishing at F = M is a proxy for MSY.

Table F.2: Life-history parameters for the three stocks.

Parameter Plaice Cod Herring
von Bertalanffy growth parameters

k [year−1] 0.10 0.197 0.49
L∞ [cm] 66 117 31
t0 [years] −2.0 −0.3 −0.7
Source ICES (2021o) growth model fit to

2016-2020
age-length keys
from IBTS Q1 & Q3

growth model fit to
2016-2020
age-length keys
from HERAS

Length at first capture Lc

Lc [cm] 26 20 25
Source ICES (2021o) estimated from

length distribution
estimated from
length distribution

MSY proxy length LF =M

LF =M [cm] 36 44.25 26.5

This section describes how the default (generic) parameterisations of the rfb and hr rules

were derived for the three stocks.

F.2.2 The biomass index

All three data-limited management procedures (the 2 over 3 rule, the rfb rule, and the hr rule)

required a biomass index. For plaice, the UK-FSP Q3 survey (beam trawl survey and part of a
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fisheries-science partnership) was chosen because this survey has the best coverage of the stock

and was most influential in previous stock assessment models (ICES, 2021o). Furthermore, this

survey occurs in the third quarter of the year, and, therefore, the time lag between the survey

timing and the catch advice is shorter compared to a survey at the beginning of the year. For

cod, the IBTS Q3 survey (international bottom trawl survey) was selected due to its timing. For

herring, the HERAS survey (herring acoustic survey) was chosen because this survey provides

a long time series, has a good stock coverage, and includes the most ages for herring. Biomass

indices were generated for these surveys by multiplying the survey numbers at age with the

weight at age, and aggregating over the survey ages.

The three surveys are shown in Figure F.5. The biomass safeguard b of the rfb and hr rule

required the definition of a trigger index value Itrigger. This value was derived from the lowest

observed biomass index value Iloss as Itrigger = w Iloss with w = 1.4 (see Figure F.5).
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Figure F.5: The biomass indices used for the three stocks.

F.2.3 The rfb rule: multiplier

The f component of the rfb rule compares the mean length in the catch to an MSY reference

length. The mean length in the catch is the mean length of fish above the length of first capture

Lc (see definition above). The multiplier x of the rule is set depending on the von Bertalanffy

growth parameter k (ICES, 2020a):

x =

⎧⎪⎪⎨⎪⎪⎩
0.95, if k < 0.20 year−1

0.90, if 0.20 year−1 ≤ k ≤ 0.32 year−1
(F.13)

Therefore, the following values for x were chosen:
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Table F.3: Selection of the multiplier x for the rfb rule depending on the von Bertalanffy growth
parameter k.

Plaice Cod Herring
k 0.10 0.197 0.49
x 0.95 0.95 0.9

For herring, k was above the recommended maximum k = 0.32 year−1, so the more precautionary

x = 0.9 was selected.

F.2.4 The hr rule: target harvest rate

The ICES guidelines for the application of the hr rule (ICES, 2020a) recommend that the target

harvest rate H is derived (1) by estimating the mean length in the catch L̄ above the length at

first capture Lc, (2) determining the years in which L̄ ≥ LF =M , (3) calculating the historical

harvest rate (catch C divided by biomass index I), and (4) selecting the harvest rates for the

years determined in step 2 and taking their average.

This procedure is illustrated in Figure F.6 for the three stocks. For plaice, the mean catch

length was taken from the ICES assessment (ICES, 2021o). For cod and herring, international

length distributions are not available and length data were generated by applying age-length keys

to the age-structured catch observations. Historical harvest rates were calculated by dividing

the total catch by the values from the biomass indices. For plaice, none of the lengths were

above the reference length LF =M and, consequently, the lowest observed harvest rate in 2014

was selected as target for the hr rule (Figure F.6). For cod, the mean length was above LF =M

in 2008-2013 and 2015-2019 and for herring for the entire time series (Figure F.6).
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Figure F.6: Illustration of the derivation of the harvest rate target for the hr rule. The top row
shows the mean catch length above the length of first capture Lc. The horizontal black line is
the reference length LF =M and catch lengths above are highlighted in red. The bottom row
shows the harvest rate (catch divided by the biomass index). Selected harvest rate values are
highlighted in red and the horizontal red dashed lines indicate the average of these values.
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F.3 Worm plots for all management procedures

Table F.4: Hyperlinks to worm plots for all stocks and MPs. For the rfb and hr rule, three options are available, the default non-optimised rule,
the optimisation with a multiplier, and the optimisation with all parameters.

Stock Operating model 2 over 3 rule rfb rule hr rule ICES MSY rule
Plaice baseline default XSA default multiplier all default multiplier all default
Plaice R: failure default XSA default multiplier all default multiplier all default
Plaice R: no AC default XSA default multiplier all default multiplier all default
Plaice M: low default XSA default multiplier all default multiplier all default
Plaice M: high default XSA default multiplier all default multiplier all default
Plaice M: Gislason default XSA default multiplier all default multiplier all default
Plaice Catch: no disc. default XSA default multiplier all default multiplier all default
Cod baseline default multiplier all default multiplier all default
Cod R: failure default multiplier all default multiplier all default
Cod R: higher default multiplier all default multiplier all default
Cod M: dens. dep. default multiplier all default multiplier all default
Cod M: no migr. default multiplier all default multiplier all default
Herring baseline default multiplier all default multiplier all default
Herring R: failure default multiplier all default multiplier all default
Herring R: higher default multiplier all default multiplier all default
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https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_baseline_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_failure_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_rec_no_AC_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_low_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_high_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_M_Gislason_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_2over3_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_2over3_XSA_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/ple.27.7e_no_discards_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_baseline_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_failure_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_rec_higher_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_dd_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/cod.27.47d20_M_no_migration_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_baseline_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_failure_ICES_SAM_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_rfb_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_rfb_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_rfb_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_hr_default.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_hr_multiplier.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_hr_all.pdf
https://github.com/shfischer/MSE_risk_comparison/blob/master/output/plots/wormplots/her.27.3a47d_rec_higher_ICES_SAM_default.pdf


F.4 Exploration of surplus production models (ICES category

2 approach)

The revised ICES data-limited guidelines (ICES, 2020a) recommend using surplus production

models for ICES category 2. The standard model is the surplus production in continuous time

(SPiCT; Pedersen & Berg, 2017) model, a state-space implementation of a Pella-Tomlinson

model. The advice for this category is then based on a stochastic short-term forecast with

a fractile rule (Mildenberger et al., 2022). The fishing target for the advice year is FMSY.

However, the advised catch is not the point estimate (median) of the stochastic forecast catch

but a percentile below the median. The default is to use the 35th percentile (ICES, 2020a).

In this approach, the assessment uncertainty is propagated into the short-term forecast and

higher assessment uncertainty decreases the advised catch, essentially advising a catch value

corresponding to a fishing mortality below FMSY.

This category 2 approach can only be used if SPiCT (or an alternative surplus production

model) can be fitted and the model meets acceptance criteria (https://raw.githubusercontent.

com/DTUAqua/spict/master/spict/inst/doc/spict_guidelines.pdf).

F.4.1 Plaice

SPiCT has been trialled several times in recent years as part of the ICES stock assessment

working group (ICES, 2021o), but the model performance was always too poor to be considered

for advice purposes. Various different model configurations, setting priors and fixing parameters

were explored but did not lead to model runs meeting the SPiCT acceptance criteria. The

assessment uncertainty was very high, and the model was highly sensitive to the last data year

(strong retrospective patterns) as well as the selection of the first data year. Consequently,

SPiCT was rejected by ICES (2021o) for the plaice stock and appeared unable to model the

stock dynamics appropriately.

Figure F.7 shows a model fit that includes both (biomass) survey indices.

F.4.2 Cod

The SPiCT model was also explored for the cod stock. For this purpose, the two IBTS surveys

(Q1 and Q3) were converted into biomass indices. Figure F.8 illustrates the SPiCT model fit for

cod. The model exhibited unacceptably high uncertainty, estimated an unrealistic low fishing
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Figure F.7: Summary of the SPiCT assessment for plaice. Shown are the estimates of biomass
and fishing mortality (absolute and relative to MSY), catch, a Kobe plot, the production curve,
the time required to reach BMSY from a forecast under different fishing scenarios, the shape
parameter defining the shape of the production curve, and one-step-ahead residuals of catch
and indices. Model estimates (solid curves) are surrounded by 95% confidence intervals. For
biomass, fishing mortality, and catch, solid blue curves are the model estimates, dashed blue
curves the confidence intervals of absolute estimates, blue shaded areas the confidence intervals
of relative estimates, horizontal black lines the MSY level, and grey shaded areas the confidence
intervals of the MSY level. In the biomass panel, the points are the scaled biomass index values
and the in the catch panel the points are observed catches.

mortality, and failed to meet SPiCT acceptance criteria. Consequently, SPiCT could not be

used for cod. Extensive explorations of model configurations and data might lead to a SPiCT

assessment for cod that meets the SPiCT acceptance criteria; however, this was outside the

scope of this study.

F.4.3 Herring

Lastly, SPiCT was also explored for the herring stock. Only the HERAS survey was included

because this was the only survey for which weights at age were available to convert the index

to a biomass index. Figure F.9 illustrates the SPiCT model fit for herring. Although the
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Figure F.8: Summary of the SPiCT assessment for cod. See Figure F.7 for details on the
illustration.

model fit appears reasonable, not all acceptance criteria for SPiCT were met. In particular, the

one-step-ahead catch residuals were not normally distributed, and the model was sensitive to

the initial parameter values used in the model fitting process (5/10 runs with different initial

parameters resulted in non-convergence and other initial parameters led to a doubling of the

unfished biomass estimate). Extensive explorations of model configurations and data might lead

to a SPiCT assessment for herring that meets the SPiCT acceptance criteria; however, this was

outside the scope of this study. Therefore, SPiCT was rejected for herring. Furthermore, even

with only one survey index, SPiCT took relatively long to converge and more than three times

longer than the age-structured SAM model, which would increase the computational effort for

an MSE simulation.

388



∞

Figure F.9: Summary of the SPiCT assessment for herring. See Figure F.7 for details on the
illustration.
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