4,774 research outputs found
Recommended from our members
Response to letter: contribution of serum ethanol concentration to the osmol gap: a prospective volunteer study.
Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study.
BackgroundA feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI.MethodsIn this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed.ResultsThe results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent.ConclusionsWe showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be employed also for other low light levels applications, such as bioluminescence
Towards the identification of essential genes using targeted genome sequencing and comparative analysis
BACKGROUND: The identification of genes essential for survival is of theoretical importance in the understanding of the minimal requirements for cellular life, and of practical importance in the identification of potential drug targets in novel pathogens. With the great time and expense required for experimental studies aimed at constructing a catalog of essential genes in a given organism, a computational approach which could identify essential genes with high accuracy would be of great value. RESULTS: We gathered numerous features which could be generated automatically from genome sequence data and assessed their relationship to essentiality, and subsequently utilized machine learning to construct an integrated classifier of essential genes in both S. cerevisiae and E. coli. When looking at single features, phyletic retention, a measure of the number of organisms an ortholog is present in, was the most predictive of essentiality. Furthermore, during construction of our phyletic retention feature we for the first time explored the evolutionary relationship among the set of organisms in which the presence of a gene is most predictive of essentiality. We found that in both E. coli and S. cerevisiae the optimal sets always contain host-associated organisms with small genomes which are closely related to the reference. Using five optimally selected organisms, we were able to improve predictive accuracy as compared to using all available sequenced organisms. We hypothesize the predictive power of these genomes is a consequence of the process of reductive evolution, by which many parasites and symbionts evolved their gene content. In addition, essentiality is measured in rich media, a condition which resembles the environments of these organisms in their hosts where many nutrients are provided. Finally, we demonstrate that integration of our most highly predictive features using a probabilistic classifier resulted in accuracies surpassing any individual feature. CONCLUSION: Using features obtainable directly from sequence data, we were able to construct a classifier which can predict essential genes with high accuracy. Furthermore, our analysis of the set of genomes in which the presence of a gene is most predictive of essentiality may suggest ways in which targeted sequencing can be used in the identification of essential genes. In summary, the methods presented here can aid in the reduction of time and money invested in essential gene identification by targeting those genes for experimentation which are predicted as being essential with a high probability
Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by caco-2 cells - towards oral insulin
“The original publication is available at www.springerlink.com”. Copyright SpringerPurpose: The influence of polymer architecture on cellular uptake and transport across Caco-2 cells of novel amphiphilic polyelectrolyte-insulin nanocomplexes was investigated. Method: Polyallylamine (PAA) (15 kDa) was grafted with palmitoyl chains (Pa) and subsequently modified with quaternary ammonium moieties (QPa). These two amphiphilic polyelectrolytes (APs) were tagged with rhodamine and their uptake by Caco-2 cells or their polyelectrolyte complexes (PECs) with fluorescein isothiocyanate-insulin (FITC-insulin) uptake were investigated using fluorescence microscopy. The integrity of the monolayer was determined by measurement of transepithelial electrical resistance (TEER). Insulin transport through Caco-2 monolayers was determined during TEER experiments. Result: Pa and insulin were co-localised in the cell membranes while QPa complexes were found within the cytoplasm. QPa complex uptake was not affected by calcium, cytochalasin D or nocodazole. Uptake was reduced by co-incubation with sodium azide, an active transport inhibitor. Both polymers opened tight junctions reversibly where the TEER values fell by up to 35 % within 30 minutes incubation with Caco-2 cells. Insulin transport through monolayers increased when QPa was used (0.27 ngmL-1 of insulin in basal compartment) compared to Pa (0.14 ngmL-1 of insulin in basal compartment) after 2 hours. Conclusion: These APs have been shown to be taken up by Caco-2 cells and reversibly open tight cell junctions. Further work is required to optimise these formulations with a view to maximising their potential to facilitate oral delivery of insulin.Peer reviewe
Nonspecific eddy current heating in magnetic field hyperthermia
In this Perspective article, we explore the definition and use of clinical tolerability metrics associated with nonspecific eddy current heating in magnetic field hyperthermia (MFH). We revisit the origins of the “Brezovich criterion,” Hof ≤ 485 MA m−1s−1, as it is applied to axial time-varying magnetic fields H (t) = Ho sin(2πft) and the human torso. We then consider alternative metrics, including the “maximal specific absorption rate” (SARmax) of eddy-current-induced power absorbed per unit mass of tissue. With reference to previously published clinical data and the results of two volunteer studies in our laboratory, we show that the SARmax metric is both suitable and reliable. We also show how it may be extracted from in silico finite element models to cope with confounding effects such as anatomical hot spots and non-axial-field geometries. We note a parallel with a standardized metric, the “local SAR” used in magnetic resonance imaging (MRI). We suggest that the limits established in clinical MRI (that the local SAR, averaged over 10 g of tissue and 6 min of treatment, should not exceed 20 mW g−1 in the torso or head, and 40 mW g−1 in the limbs) might be regarded as a good starting point for the design of MFH interventions. We conclude with the recommendation that the SARmax metric is adopted for future use in the development of clinically safe and tolerable MFH equipment
Community composition of epibenthic megafauna on the West Greenland Shelf
Epibenthic organisms are a critical component of the marine environment, functioning as ecosystem engineers, habitat and food for other organisms. Our knowledge of the diversity, complexity and sensitivities of these habitats is limited, particularly at higher latitudes and greater depths. The West Coast of Greenland is the site of a commercially important shrimp trawl fishery, but there are few published records describing the benthic community structure of the region. Here we report results from benthic camera surveys conducted at 119 sites, over 3 years, spanning 1400 km of the West Greenland continental shelf (61–725 m depth). A total of 29 classes of epibenthic taxa were identified from the images. There are significant differences of composition and diversity in sites with hard and soft substrate. Hard-substrate communities are relatively diverse with higher abundances and are characterised by sessile, attached groups such as Hydrozoa, Anthozoa, Bryozoa and Porifera. Soft-sediment sites are less diverse and dominated by Polychaeta and have specialist Malacostraca such as the commercially exploited shrimp, Pandalus borealis. Distribution patterns and variation in epibenthic megafauna are related to substrate and the environmental parameters depth, temperature and current speed. This study represents the first quantitative characterisation of epibenthic megafaunal assemblages on the West Greenland continental shelf. These data constitute an important baseline, albeit in a region heavily impacted by trawl fisheries, and demonstrate the utility of benthic photography for examining and monitoring seabed diversity and change
An investigation of minimisation criteria
Minimisation can be used within treatment trials to ensure that prognostic factors are evenly distributed between treatment groups. The technique is relatively straightforward to apply but does require running tallies of patient recruitments to be made and some simple calculations to be performed prior to each allocation. As computing facilities have become more widely available, minimisation has become a more feasible option for many. Although the technique has increased in popularity, the mode of application is often poorly reported and the choice of input parameters not justified in any logical way
Fluctuations of a holographic quantum Hall fluid
We analyze the neutral spectrum of the holographic quantum Hall fluid
described by the D2-D8' model. As expected for a quantum Hall state, we find
the system to be stable and gapped and that, at least over much of the
parameter space, the lowest excitation mode is a magneto-roton. In addition, we
find magneto-rotons in higher modes as well. We show that these magneto-rotons
are direct consequences of level crossings between vector and scalar modes.Comment: 20 pages, 8 figures; v.2 figures improved, 2 figures added, and text
clarified particularly in Sec. 5, to appear in JHE
Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal.
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility
Biogeochemistry: Early phosphorus redigested
Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world
- …