7,476 research outputs found

    Derivative relation for thermopower in the quantum Hall regime

    Full text link
    Recently, Tieke et al (to be published in PRL) have observed the relation S_{yx} = alpha B dS_{xx}/dB for the components of the thermopower tensor in the quantum Hall regime, where alpha is a constant and B is the magnetic field. Simon and Halperin (PRL 73, 3278 (1994)) have suggested that an analogous relation observed for the resistivity tensor R_{xx} = \alpha B dR_{xy}/dB can be explained with a model of classical transport in an inhomogeneous medium where the local Hall resistivity is a function of position and the local dissipative resistivity is a small constant. In the present paper, we show that this new thermopower relation can be explained with a similar model.Comment: This paper supercedes cond-mat/9705001 which was withdrawn. 4 pages, Revte

    Local majority dynamics on preferential attachment graphs

    Full text link
    Suppose in a graph GG vertices can be either red or blue. Let kk be odd. At each time step, each vertex vv in GG polls kk random neighbours and takes the majority colour. If it doesn't have kk neighbours, it simply polls all of them, or all less one if the degree of vv is even. We study this protocol on the preferential attachment model of Albert and Barab\'asi, which gives rise to a degree distribution that has roughly power-law P(x)1x3P(x) \sim \frac{1}{x^{3}}, as well as generalisations which give exponents larger than 33. The setting is as follows: Initially each vertex of GG is red independently with probability α<12\alpha < \frac{1}{2}, and is otherwise blue. We show that if α\alpha is sufficiently biased away from 12\frac{1}{2}, then with high probability, consensus is reached on the initial global majority within O(logdlogdt)O(\log_d \log_d t) steps. Here tt is the number of vertices and d5d \geq 5 is the minimum of kk and mm (or m1m-1 if mm is even), mm being the number of edges each new vertex adds in the preferential attachment generative process. Additionally, our analysis reduces the required bias of α\alpha for graphs of a given degree sequence studied by the first author (which includes, e.g., random regular graphs)

    Adiabatic Control of Decoherence-Free-Subspaces in an Open Collective System

    Full text link
    We propose a method to adiabatically control an atomic ensemble using a decoherence-free subspace (DFS) within a dissipative cavity. We can engineer a specific eigenstate of the system's Lindblad jump operators by injecting a field into the cavity which deconstructively interferes with the emission amplitude of the ensemble. In contrast to previous adiabatic DFS proposals, our scheme creates a DFS in the presence of collective decoherence. We therefore have the ability to engineer states that have high multi-particle entanglements which may be exploited for quantum information science or metrology. We further demonstrate a more optimized driving scheme that utilizes the knowledge of possible diabatic evolution gained from the so-called adiabatic criteria. This allows us to evolve to a desired state with exceptionally high fidelity on a time scale that does not depend on the number of atoms in the ensemble. By engineering the DFS eigenstate adiabatically, our method allows for faster state preparation than previous schemes that rely on damping into a desired state solely using dissipation.Comment: 15 pages and 8 Figure

    Breakfast glycaemic index and exercise: combined effects on adolescents' cognition

    Get PDF
    The aim of the present study was to examine the combined effects of breakfast glycaemic index (GI) and a mid-morning bout of exercise on adolescents’ cognitive function. Participants were randomly allocated to a high or low GI breakfast group in a mixed research design, where each participant completed two experimental trials (exercise and resting). Forty-two adolescents (12.4±0.5 years old), undertook a bout of exercise (ten repeats of level one of the multi-stage fitness test; exercise trial) or continued to rest (resting trial) following consumption of either a high or low GI breakfast. A battery of cognitive function tests (visual search test, Stroop test and Sternberg paradigm) was completed 30 min before and 45 min following the exercise. Average heart rate during exercise was 170±15 beats.min-1. On the complex level of the Stroop test, response times improved across the morning following the low GI breakfast on both the exercise and resting trials, though the improvement was greatest on the exercise trial. However, response times only improved on the resting trial following the high GI breakfast (p = 0.012). On the 5 letter level of the Sternberg paradigm, response times improved across the morning following the low GI breakfast (regardless of exercise) and only on the exercise trial following the high GI breakfast (p = 0.019). The findings of the present study suggest that the combined effects of breakfast GI and exercise in adolescents depend upon the component of cognitive function examined. A low GI breakfast and mid-morning bout of exercise were individually beneficial for response times on the Sternberg paradigm, whereas they conferred additional benefits for response times on the Stroop test

    Genetic Variation at Nuclear Loci Fails to Distinguish Two Morphologically Distinct Species of Aquilegia

    Get PDF
    Aquilegia formosa and pubescens are two closely related species belonging to the columbine genus. Despite their morphological and ecological differences, previous studies have revealed a large degree of intercompatibility, as well as little sequence divergence between these two taxa [1], [2]. We compared the inter- and intraspecific patterns of variation for 9 nuclear loci, and found that the two species were practically indistinguishable at the level of DNA sequence polymorphism, indicating either very recent speciation or continued gene flow. As a comparison, we also analyzed variation at two loci across 30 other Aquilegia taxa; this revealed slightly more differentiation among taxa, which seemed best explained by geographic distance. By contrast, we found no evidence for isolation by distance on a more local geographic scale. We conclude that the extremely low levels of genetic differentiation between A. formosa and A.pubescens at neutral loci will facilitate future genome-wide scans for speciation genes

    Particle separation by phase modulated surface acoustic waves

    Get PDF
    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution

    The Onset of Anisotropic Transport of Two-Dimensional Electrons in High Landau Levels: An Isotropic-to-Nematic Liquid Crystal Phase Transition?

    Get PDF
    The recently discovered anisotropy of the longitudinal resistance of two-dimensional electrons near half filling of high Landau levels is found to persist to much higher temperatures T when a large in-plane magnetic field B|| is applied. Under these conditions we find that the longitudinal resistivity scales quasi-linearly with B||/T. These observations support the notion that the onset of anisotropy at B||=0 does not reflect the spontaneous development of charge density modulations but may instead signal an isotropic-to-nematic liquid crystal phase transition.Comment: 5 pages, 4 figure
    corecore