44 research outputs found

    AugmentedForearm: Exploring the design space of a display-enhanced forearm

    Get PDF
    Recent technical advances allow traditional wristwatches to be equipped with high processing power. Not only do they allow for glancing at the time, but they also allow users to interact with digital information. However, the display space is very limited. Extending the screen to cover the entire forearm is promising. It allows the display to be worn similarly to a wristwatch while providing a large display surface. In this paper we present the design space of a display-augmented forearm, focusing on two specific properties of the forearm: its hybrid nature as a private and a public display surface and the way clothing influences information display. We show a wearable prototypical implementation along with interactions that instantiate the design space: sleeve-store, sleeve-zoom, public forearm display and interactive tattoo

    A cuttable multi-touch sensor

    Get PDF
    We propose cutting as a novel paradigm for ad-hoc customization of printed electronic components. As a first instantiation, we contribute a printed capacitive multi-touch sensor, which can be cut by the end-user to modify its size and shape. This very direct manipulation allows the end-user to easily make real-world objects and surfaces touch-interactive, to augment physical prototypes and to enhance paper craft. We contribute a set of technical principles for the design of printable circuitry that makes the sensor more robust against cuts, damages and removed areas. This includes novel physical topologies and printed forward error correction. A technical evaluation compares different topologies and shows that the sensor remains functional when cut to a different shape.Deutsche Forschungsgemeinschaft (Cluster of Excellence Multimodal Computing and Interaction, German Federal Excellence Initiative

    PrintSense: a versatile sensing technique to support multimodal flexible surface interaction

    Get PDF
    We present a multimodal on-surface and near-surface sensing technique for planar, curved and flexible surfaces. Our technique leverages temporal multiplexing of signals coming from a universal interdigitated electrode design, which is printed as a single conductive layer on a flexible substrate. It supports sensing of touch and proximity input, and moreover is capable of capturing several levels of pressure and flexing. We leverage recent developments in conductive inkjet printing as a way to prototype electrode patterns, and combine this with our hardware module for supporting the full range of sensing methods. As the technique is low-cost and easy to implement, it is particularly well-suited for prototyping touch- and hover-based user interfaces, including curved and deformable ones

    Subgingival lipid A profile and endotoxin activity in periodontal health and disease.

    Get PDF
    OBJECTIVES: Regulation of lipopolysaccharide (LPS) chemical composition, particularly its lipid A domain, is an important, naturally occurring mechanism that drives bacteria-host immune system interactions into either a symbiotic or pathogenic relationship. Members of the subgingival oral microbiota can critically modulate host immuno-inflammatory responses by synthesizing different LPS isoforms. The objectives of this study were to analyze subgingival lipid A profiles and endotoxin activities in periodontal health and disease and to evaluate the use of the recombinant factor C assay as a new, lipid A-based biosensor for personalized, point-of-care periodontal therapy. MATERIALS AND METHODS: Subgingival plaque samples were collected from healthy individuals and chronic periodontitis patients before and after periodontal therapy. Chemical composition of subgingival lipid A moieties was determined by ESI-Mass Spectrometry. Endotoxin activity of subgingival LPS extracts was assessed using the recombinant factor C assay, and their inflammatory potential was examined in THP-1-derived macrophages by measuring TNF-α and IL-8 production. RESULTS: Characteristic lipid A molecular signatures, corresponding to over-acylated, bi-phosphorylated lipid A isoforms, were observed in diseased samples. Healthy and post-treatment samples were characterized by lower m/z peaks, related to under-acylated, hypo-phosphorylated lipid A structures. Endotoxin activity levels and inflammatory potentials of subgingival LPS extracts from periodontitis patients were significantly higher compared to healthy and post-treatment samples. CONCLUSIONS: This is the first study to consider structure-function-clinical implications of different lipid A isoforms present in the subgingival niche and sheds new light on molecular pathogenic mechanisms of subgingival biofilm communities. CLINICAL RELEVANCE: Subgingival endotoxin activity (determined by lipid A chemical composition) could be a reliable, bacterially derived biomarker and a risk assessment tool for personalized periodontal care

    Towards Understanding Erasing-based Interactions: Adding Erasing Capabilities to Anoto Pens

    No full text
    Anoto pens are a powerful technology for capturing contents written on paper. However, current pens do not support eras-ing contents. We show how to easily construct refills for Anoto pens that allow users to erase handwritten traces. Moreover, we discuss how to design software solutions that incorporate paper-based erasing as a first-order command

    When mobile phones expand into handheld tabletops

    No full text

    Verformbaren Mobilgeräten gehört die Zukunft

    No full text
    corecore