5,491 research outputs found

    Revealing the intensity of turbulent energy transfer in planetary atmospheres

    Get PDF
    Images of the giant planets Jupiter and Saturn show highly turbulent storms and swirling Q23 clouds that reflect the intensity of turbulence in their atmospheres. Quantifying planetary turbulence is inaccessible to conventional tools, however, since they require large quantities of spatially and temporally resolved data. Here we show, using experiments, observations, and simulations, that potential vorticity (PV) is a straightforward and universal diagnostic that can be used to estimate turbulent energy transfer in a stably stratified atmosphere. We use the conservation of PV to define a length scale, LM, representing a typical distance over which PV is mixed by planetary turbulence. LM increases as the turbulent intensity increases and can be estimated from any latitudinal PV profile. Using this principle, we estimate LM within Jupiter's and Saturn's tropospheres, showing for the first time that turbulent energy transfer in Saturn's atmosphere is four times less intense than Jupiter'

    Effect of grain size of polycrystalline diamond on its heat spreading properties

    Get PDF
    Abstract The exceptionally high thermal conductivity of polycrystalline diamond (&gt;2000 W m−1 K−1) makes it a very attractive material for optimizing the thermal management of high-power devices. In this paper, the thermal conductivity of a diamond sample capturing grain size evolution from nucleation towards the growth surface is studied using an optimized 3ω technique. The thermal conductivity is found to decrease with decreasing grain size, which is in good agreement with theory. These results clearly reveal the minimum film thickness and polishing thickness from nucleation needed to achieve single-crystal diamond performance, and thus enable production of an optimal polycrystalline diamond for heat-spreading applications.</jats:p

    Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load

    Get PDF
    Nitrogen (N) deposition impacts natural and semi-natural ecosystems globally. The responses of vegetation to N deposition may, however, differ strongly between habitats and may be mediated by the form of N. Although much attention has been focused on the impact of total N deposition, the effects of reduced and oxidised N, independent of the total N deposition, have received less attention. In this paper, we present new analyses of national monitoring data in the UK to provide an extensive evaluation of whether there are differences in the effects of reduced and oxidised N deposition across eight habitat types (acid, calcareous and mesotrophic grasslands, upland and lowland heaths, bogs and mires, base-rich mires, woodlands). We analysed data from 6860 plots in the British Countryside Survey 2007 for effects of total N deposition and N form on species richness, Ellenberg N values and grass:forb ratio. Our results provide clear evidence that that N deposition affects species richness in all habitats except base-rich mires, after factoring out correlated explanatory variables (climate and sulphur deposition). In addition, the form of N in deposition appears important for the biodiversity of grasslands and woodlands but not mires and heaths. Ellenberg N increased more in relation to NHx deposition than NOy deposition in all but one habitat type. Relationships between species richness and N form were habitat-specific: acid and mesotrophic grasslands appear more sensitive to NHx deposition while calcareous grasslands and woodlands appeared more responsive to NOy deposition. These relationships are likely driven by the preferences of the component plant species for oxidised or reduced forms of N, rather than by soil acidification

    Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation.

    Get PDF
    The intracellular ATP-ribosyltransferases PARP1 and PARP2, contribute to DNA base excision repair (BER) and DNA demethylation and have been implicated in epigenetic programming in early mammalian development. Recently, proteomic analyses identified BER proteins to be covalently poly-ADP-ribosylated by PARPs. The role of this posttranslational modification in the BER process is unknown. Here, we show that PARP1 senses AP-sites and SSBs generated during TET-TDG mediated active DNA demethylation and covalently attaches PAR to each BER protein engaged. Covalent PARylation dissociates BER proteins from DNA, which accelerates the completion of the repair process. Consistently, inhibition of PARylation in mESC resulted both in reduced locus-specific TET-TDG-targeted DNA demethylation, and in reduced general repair of random DNA damage. Our findings establish a critical function of covalent protein PARylation in coordinating molecular processes associated with dynamic DNA methylation

    The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice

    Get PDF
    Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member–encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-β–activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1–MKK3/6–p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38β and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38β agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging
    • …
    corecore