11,874 research outputs found

    On column density thresholds and the star formation rate

    Full text link
    We present the results of a numerical study designed to address the question of whether there is a column density threshold for star formation within molecular clouds. We have simulated a large number of different clouds, with volume and column densities spanning a wide range of different values, using a state-of-the-art model for the coupled chemical, thermal and dynamical evolution of the gas. We show that star formation is only possible in regions where the mean (area-averaged) column density exceeds 1021cm210^{21} \: {\rm cm^{-2}}. Within the clouds, we also show that there is a good correlation between the mass of gas above a K-band extinction AK=0.8A_{\rm K} = 0.8 and the star formation rate (SFR), in agreement with recent observational work. Previously, this relationship has been explained in terms of a correlation between the SFR and the mass in dense gas. However, we find that this correlation is weaker and more time-dependent than that between the SFR and the column density. In support of previous studies, we argue that dust shielding is the key process: the true correlation is one between the SFR and the mass in cold, well-shielded gas, and the latter correlates better with the column density than the volume density.Comment: 21 pages and 12 figures. Accepted for publication in MNRA

    Is atomic carbon a good tracer of molecular gas in metal-poor galaxies?

    Get PDF
    Carbon monoxide (CO) is widely used as a tracer of molecular hydrogen (H2) in metal-rich galaxies, but is known to become ineffective in low metallicity dwarf galaxies. Atomic carbon has been suggested as a superior tracer of H2 in these metal-poor systems, but its suitability remains unproven. To help us to assess how well atomic carbon traces H2 at low metallicity, we have performed a series of numerical simulations of turbulent molecular clouds that cover a wide range of different metallicities. Our simulations demonstrate that in star-forming clouds, the conversion factor between [CI] emission and H2 mass, XCIX_{\rm CI}, scales approximately as XCIZ1X_{\rm CI} \propto Z^{-1}. We recover a similar scaling for the CO-to-H2 conversion factor, XCOX_{\rm CO}, but find that at this point in the evolution of the clouds, XCOX_{\rm CO} is consistently smaller than XCIX_{\rm CI}, by a factor of a few or more. We have also examined how XCIX_{\rm CI} and XCOX_{\rm CO} evolve with time. We find that XCIX_{\rm CI} does not vary strongly with time, demonstrating that atomic carbon remains a good tracer of H2 in metal-poor systems even at times significantly before the onset of star formation. On the other hand, XCOX_{\rm CO} varies very strongly with time in metal-poor clouds, showing that CO does not trace H2 well in starless clouds at low metallicity.Comment: 16 pages, 9 figures. Updated to match the version accepted by MNRAS. The main change from the previous version is a new sub-section (3.6) discussing the possible impact of freeze-out and other processes not included in our numerical simulation

    Does the CO-to-H2 conversion factor depend on the star formation rate?

    Get PDF
    We present a series of numerical simulations that explore how the `X-factor', XCOX_{CO} -- the conversion factor between the observed integrated CO emission and the column density of molecular hydrogen -- varies with the environmental conditions in which a molecular cloud is placed. Our investigation is centred around two environmental conditions in particular: the cosmic ray ionisation rate (CRIR) and the strength of the interstellar radiation field (ISRF). Since both these properties of the interstellar medium have their origins in massive stars, we make the assumption in this paper that both the strength of the ISRF and the CRIR scale linearly with the local star formation rate (SFR). The cloud modelling in this study first involves running numerical simulations that capture the cloud dynamics, as well as the time-dependent chemistry, and ISM heating and cooling. These simulations are then post-processed with a line radiative transfer code to create synthetic 12CO (1-0) emission maps from which XCOX_{CO} can be calculated. We find that for 1e4 solar mass virialised clouds with mean density 100 cm3^{-3}, XCOX_{CO} is only weakly dependent on the local SFR, varying by a factor of a few over two orders of magnitude in SFR. In contrast, we find that for similar clouds but with masses of 1e5 solar masses, the X-factor will vary by an order of magnitude over the same range in SFR, implying that extra-galactic star formation laws should be viewed with caution. However, for denser (10410^4 cm3^{-3}), super-virial clouds such as those found at the centre of the Milky Way, the X-factor is once again independent of the local SFR.Comment: 16 pages, 5 figures. Accepted by MNRA

    The First Stellar Cluster

    Full text link
    We report results from numerical simulations of star formation in the early universe that focus on gas at very high densities and very low metallicities. We argue that the gas in the central regions of protogalactic halos will fragment as long as it carries sufficient angular momentum. Rotation leads to the build-up of massive disk-like structures which fragment to form protostars. At metallicities Z ~ 10^-5 Zsun, dust cooling becomes effective and leads to a sudden drop of temperature at densities above n = 10^12 cm^-3. This induces vigorous fragmentation, leading to a very densely-packed cluster of low-mass stars. This is the first stellar cluster. The mass function of stars peaks below 1 Msun, similar to what is found in the solar neighborhood, and comparable to the masses of the very-low metallicity subgiant stars recently discovered in the halo of our Milky Way. We find that even purely primordial gas can fragment at densities 10^14 cm^-3 < n < 10^16 cm^-3, although the resulting mass function contains only a few objects (at least a factor of ten less than the Z = 10^-5 Zsun mass function), and is biased towards higher masses. A similar result is found for gas with Z = 10^-6 Zsun. Gas with Z <= 10^-6 Zsun behaves roughly isothermally at these densities (with polytropic exponent gamma ~ 1.06) and the massive disk-like structures that form due to angular momentum conservation will be marginally unstable. As fragmentation is less efficient, we expect stars with Z <= 10^-6 Zsun to be massive, with masses in excess of several tens of solar masses, consistent with the results from previous studies.Comment: 9 pages, 6 figures. Accepted by ApJ for publicatio

    Gravitational fragmentation in turbulent primordial gas and the initial mass function of Population III stars

    Get PDF
    We report results from numerical simulations of star formation in the early universe that focus on the dynamical behavior of metal-free gas under different initial and environmental conditions. In particular we investigate the role of turbulence, which is thought to ubiquitously accompany the collapse of high-redshift halos. We distinguish between two main cases: the birth of Population III.1 stars - those which form in the pristine halos unaffected by prior star formation - and the formation of Population III.2 stars - those forming in halos where the gas is still metal free but has an increased ionization fraction. This latter case can arise either from exposure to the intense UV radiation of stellar sources in neighboring halos, or from the high virial temperatures associated with the formation of massive halos, that is, those with masses greater than 1e8 solar masses. We find that turbulent primordial gas is highly susceptible to fragmentation in both cases, even for turbulence in the subsonic regime, i.e. for rms velocity dispersions as low as 20 % of the sound speed. Contrary to our original expectations, fragmentation is more vigorous and more widespread in pristine halos compared to pre-ionized ones. We therefore predict Pop III.1 stars to be on average of somewhat lower mass, and form in larger groups, than Pop III.2 stars. We find that fragment masses cover over two orders of magnitude, indicating that the resulting Population III initial mass function was significantly extended in mass as well. This prompts the need for a large, high-resolution study of the formation of dark matter minihalos that is capable of resolving the turbulent flows in the gas at the moment when the baryons become self-gravitating. This would help determine which, if any, of the initial conditions presented in our study are realized in nature.Comment: Accepted for publication in Ap

    Formation of Stellar Clusters and the Importance of Thermodynamics for Fragmentation

    Full text link
    We discuss results from numerical simulations of star cluster formation in the turbulent interstellar medium (ISM). The thermodynamic behavior of the star-forming gas plays a crucial role in fragmentation and determines the stellar mass function as well as the dynamic properties of the nascent stellar cluster. This holds for star formation in molecular clouds in the solar neighborhood as well as for the formation of the very first stars in the early universe. The thermodynamic state of the ISM is a result of the balance between heating and cooling processes, which in turn are determined by atomic and molecular physics and by chemical abundances. Features in the effective equation of state of the gas, such as a transition from a cooling to a heating regime, define a characteristic mass scale for fragmentation and so set the peak of the initial mass function of stars (IMF). As it is based on fundamental physical quantities and constants, this is an attractive approach to explain the apparent universality of the IMF in the solar neighborhood as well as the transition from purely primordial high-mass star formation to the more normal low-mass mode observed today.Comment: 10 pages, invited review, to appear in Dynamical Evolution of Dense Stellar Systems, Proceed. of the IAU Symp. 246 (Capri, Sept. 2007), eds. E.Vesperini, M. Giersz, and A. Sill

    Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view

    Get PDF
    We study the connection of star formation to atomic (HI) and molecular hydrogen (H2_2) in isolated, low metallicity dwarf galaxies with high-resolution (mgasm_{\rm gas} = 4 M_\odot, NngbN_{\rm ngb} = 100) SPH simulations. The model includes self-gravity, non-equilibrium cooling, shielding from an interstellar radiation field, the chemistry of H2_2 formation, H2_2-independent star formation, supernova feedback and metal enrichment. We find that the H2_2 mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities n<n < 1 cm3^{-3}. Because of the long chemical timescales, the H2_2 mass remains out of chemical equilibrium throughout the simulation. Star formation is well-correlated with cold ( T \leqslant 100 K ) gas, but this dense and cold gas - the reservoir for star formation - is dominated by HI, not H2_2. In addition, a significant fraction of H2_2 resides in a diffuse, warm phase, which is not star-forming. The ISM is dominated by warm gas (100 K << T 3×104\leqslant 3\times 10^4 K) both in mass and in volume. The scale height of the gaseous disc increases with radius while the cold gas is always confined to a thin layer in the mid-plane. The cold gas fraction is regulated by feedback at small radii and by the assumed radiation field at large radii. The decreasing cold gas fractions result in a rapid increase in depletion time (up to 100 Gyrs) for total gas surface densities ΣHI+H2\Sigma_{\rm HI+H_2} \lesssim 10 M_\odotpc2^{-2}, in agreement with observations of dwarf galaxies in the Kennicutt-Schmidt plane.Comment: Accepted for publication in MNRAS. Changes (including a pamameter study in Appendix C) highlighte

    Statistical properties of dark matter mini-haloes at z >= 15

    Full text link
    Understanding the formation of the first objects in the universe critically depends on knowing whether the properties of small dark matter structures at high-redshift (z > 15) are different from their more massive lower-redshift counterparts. To clarify this point, we performed a high-resolution N-body simulation of a cosmological volume 1 Mpc/h comoving on a side, reaching the highest mass resolution to date in this regime. We make precision measurements of various physical properties that characterize dark matter haloes (such as the virial ratio, spin parameter, shape, and formation times, etc.) for the high-redshift (z > 15) dark matter mini-haloes we find in our simulation, and compare them to literature results and a moderate-resolution comparison run within a cube of side-length 100 Mpc/h. We find that dark matter haloes at high-redshift have a log-normal distribution of the dimensionless spin parameter centered around {\lambda} \sim 0.03, similar to their more massive counterparts. They tend to have a small ratio of the length of the shortest axis to the longest axis (sphericity), and are highly prolate. In fact, haloes of given mass that formed recently are the least spherical, have the highest virial ratios, and have the highest spins. Interestingly, the formation times of our mini-halos depend only very weakly on mass, in contrast to more massive objects. This is expected from the slope of the linear power spectrum of density perturbations at this scale, but despite this difference, dark matter structures at high-redshift share many properties with their much more massive counterparts observed at later times.Comment: 17 pages. Accepted for publication in MNRA
    corecore