20 research outputs found

    Autonomous GN and C for Spacecraft Exploration of Comets and Asteroids

    Get PDF
    A spacecraft guidance, navigation, and control (GN&C) system is needed to enable a spacecraft to descend to a surface, take a sample using a touch-and-go (TAG) sampling approach, and then safely ascend. At the time of this reporting, a flyable GN&C system that can accomplish these goals is beyond state of the art. This article describes AutoGNC, which is a GN&C system capable of addressing these goals, which has recently been developed and demonstrated to a maturity TRL-5-plus. The AutoGNC solution matures and integrates two previously existing JPL capabilities into a single unified GN&C system. The two capabilities are AutoNAV and GREX. AutoNAV is JPL s current flight navigation system, and is fairly mature with respect to flybys and rendezvous with small bodies, but is lacking capability for close surface proximity operations, sampling, and contact. G-REX is a suite of low-TRL algorithms and capabilities that enables spacecraft operations in close surface proximity and for performing sampling/contact. The development and integration of AutoNAV and G-REX components into AutoGNC provides a single, unified GN&C capability for addressing the autonomy, close-proximity, and sampling/contact aspects of small-body sample return missions. AutoGNC is an integrated capability comprising elements that were developed separately. The main algorithms and component capabilities that have been matured and integrated are autonomy for near-surface operations, terrain-relative navigation (TRN), real-time image-based feedback guidance and control, and six degrees of freedom (6DOF) control of the TAG sampling event. Autonomy is achieved based on an AutoGNC Executive written in Virtual Machine Language (VML) incorporating high-level control, data management, and fault protection. In descending to the surface, the AutoGNC system uses camera images to determine its position and velocity relative to the terrain. This capability for TRN leverages native capabilities of the original AutoNAV system, but required advancements that integrate the separate capabilities for shape modeling, state estimation, image rendering, defining a database of onboard maps, and performing real-time landmark recognition against the stored maps. The ability to use images to guide the spacecraft requires the capability for image-based feedback control. In Auto- GNC, navigation estimates are fed into an onboard guidance and control system that keeps the spacecraft guided along a desired path, as it descends towards its targeted landing or sampling site. Once near the site, AutoGNC achieves a prescribed guidance condition for TAG sampling (position/orientation, velocity), and a prescribed force profile on the sampling end-effector. A dedicated 6DOF TAG control then implements the ascent burn while recovering from sampling disturbances and induced attitude rates. The control also minimizes structural interactions with flexible solar panels and disallows any part of the spacecraft from making contact with the ground (other than the intended end-effector)

    RACE-IT – Rapid Acute Coronary Syndrome Exclusion using the Beckman Coulter Access High-Sensitivity Cardiac Troponin I: a Stepped-Wedge Cluster Randomized

    Get PDF
    Background: Protocols utilizing high-sensitivity cardiac troponin (hs-cTn) assays for the evaluation of suspected acute coronary syndrome (ACS) in the emergency department (ED) have been gaining popularity across the US and the world. These protocols more rapidly rule-out ACS and more accurately identify the presence of acute myocardial injury. At this time, few randomized trials have evaluated the safety and operational impact of these assays, resulting in limited evidence to guide the use and implementation of hs-cTn in the ED. Objective: The main study objective is to test the effectiveness of a rapid ACS rule-out pathway using hs-cTnI in safely discharging patients from the ED for whom clinical suspicion for ACS exists. Design: This prospective, implementation trial (n = 11,070) will utilize a stepped wedge cluster randomized trial design. The design will allow for all participating sites to capture benefit from the implementation of the hs-cTnI pathway while providing data evaluating the effectiveness in providing safe and rapid evaluation of patients with clinical suspicion for ACS. Summary: Demonstrating that clinical pathways using hs-cTnI can be effectively implemented to rapidly rule-out ACS while conserving costly hospital resources has significant implications for the care of patients with possible acute cardiac conditions in EDs across the US. Clinicaltrials.gov identifier: NCT04488913

    Genetic Variants in Folate and Cobalamin Metabolism-Related Genes in Pregnant Women of a Homogeneous Spanish Population: The Need for Revisiting the Current Vitamin Supplementation Strategies

    No full text
    Polymorphisms of genes involved in the metabolism and transport of folate and cobalamin could play relevant roles in pregnancy outcomes. This study assessed the prevalence of genetic polymorphisms of folate and cobalamin metabolism-related genes such as MTHFR, MTR, CUBN, and SLC19A1 in pregnant women of a homogeneous Spanish population according to conception, pregnancy, delivery, and newborns complications. This study was conducted on 149 nulliparous women with singleton pregnancies. Sociodemographic and obstetrics variables were recorded, and all patients were genotyped in the MTHFR, MTR, CUBN, and SLC10A1 polymorphisms. The distribution of genotypes detected in this cohort was similar to the population distribution reported in Europe, highlighting that more than 50% of women were carriers of risk alleles of the studied genes. In women with the MTHFR risk allele, there was a statistically significant higher frequency of assisted fertilisation and a higher frequency of preeclampsia and preterm birth. Moreover, CUBN (rs1801222) polymorphism carriers showed a statistically significantly lower frequency of complications during delivery. In conclusion, the prevalence of genetic variants related to folic acid and vitamin B12 metabolic genes in pregnant women is related to mother and neonatal outcomes. Knowing the prevalence of these polymorphisms may lead to a personalised prescription of vitamin intake
    corecore