73 research outputs found

    Sodium-Assisted Formation of Binding and Traverse Conformations of the Substrate in a Neurotransmitter Sodium Symporter Model

    Get PDF
    Therapeutics designed to increase synaptic neurotransmitter levels by inhibiting neurotransmitter sodium sym- porters (NSSs) classify a strategic approach to treat brain disorders such as depression or epilepsy, however, the critical elementary steps that couple downhill flux of sodium to uphill transport of neurotransmitter are not disti nguished as yet. Here we present modelling of NSS member neuronal GAT1 with the substrate � -aminobutyric acid (GABA), the major inhibitory neurotransmitter. GABA binding is simulated with the occluded conformation of GAT1 homodimer in an ex- plicit lipid/water environment. Simulations performed in the 1-10 ns range of time elucidated persistent formation of half- extended minor and H-bridged major GABA conformations, referred to as binding and traverse conformations, respec- tively. The traverse GABA conformation was further stabilized by GAT1-bound Na + (1). We also observed Na + (1) trans- location to GAT1-bound Cl - as well as the appearance of water molecules at GABA and GAT1-bound Na + (2), conjectur- ing causality. Scaling dynamics suggest that the traverse GABA conformation may be valid for developing substrate in- hibitors with high efficacy. The potential for this finding is significant with impact not only in pharmacology but wherever understanding of the mechanism of neurotransmitter uptake is valuable

    Activation of Astroglial Calcium Signaling by Endogenous Metabolites Succinate and Gamma-Hydroxybutyrate in the Nucleus Accumbens

    Get PDF
    Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signaling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested that Ca2+ was released from internal stores. Similarly to SUC, the GHB response was also characterized by an effective concentration of 50 μM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1 subunit in the presence and absence of the N-Methyl-d-Aspartate (NMDA) receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV), indicating action mechanisms independent of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252, and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91) also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca2+ signaling in astrocytic networks

    Connexons Coupling to Gap Junction Channel: Potential Role for Extracellular Protein Stabilization Centers

    Get PDF
    Connexin (Cx) proteins establish intercellular gap junction channels (Cx GJCs) through coupling of two apposed hexameric Cx hemichannels (Cx HCs, connexons). Pre- and post-GJ interfaces consist of extracellular EL1 and EL2 loops, each with three conserved cysteines. Previously, we reported that known peptide inhibitors, mimicking a variety of Cx43 sequences, appear non-selective when binding to homomeric Cx43 vs. Cx36 GJC homology model subtypes. In pursuit of finding potentially Cx subtype-specific inhibitors of connexon-connexon coupling, we aimed at to understand better how the GJ interface is formed. Here we report on the discovery of Cx GJC subtype-specific protein stabilization centers (SCs) featuring GJ interface architecture. First, the Cx43 GJC homology model, embedded in two opposed membrane bilayers, has been devised. Next, we endorsed the fluctuation dynamics of SCs of the interface domain of Cx43 GJC by applying standard molecular dynamics under open and closed cystine disulfide bond ((C)S-S(C)) preconditions. The simulations confirmed the major role of the unique trans-GJ SC pattern comprising conserved (55N, 56T) and non-conserved (57Q) residues of the apposed EL1 loops in the stabilization of the GJC complex. Importantly, clusters of SC patterns residing close to the GJ interface domain appear to orient the interface formation via the numerous SCs between EL1 and EL2. These include central (54C)S-S(198C) or (61C)S-S(192C) contacts with residues 53R, 54C, 55N, 197D, 199F or 64V, 191P, respectively. In addition, we revealed that GJC interface formation is favoured when the psi dihedral angle of the nearby 193P residue is stable around 180° and the interface SCs disappear when this angle moves to the 0° to −45° range. The potential of the association of non-conserved residues with SC motifs in connexon-connexon coupling makes the development of Cx subtype-specific inhibitors viable

    Facilitating better outcomes: how positive species interactions can improve oyster reef restoration

    Get PDF
    Over 85% of the world's oyster reefs have been lost in the past two centuries, triggering a global effort to restore shellfish reef ecosystems and the ecosystem services they provide. While there has been considerable success in re-establishing oyster reefs, many challenges remain. These include: high incidence of failed restoration, high cost of restoration per unit area, and increasing stress from climate change. In order to leverage our past successes and progress the field, we must increase restoration efficiencies that not only reduce cost per unit area, but also increase the resilience of restored ecosystems. To help address this need, we qualitatively review the literature associated with the structure and function of oyster reef ecosystems to identify key positive species interactions (i.e., those species interactions where at least one partner benefits and no partners are harmed). We classified positive inter- and intraspecific interactions between oysters and organisms associated with oyster ecosystems into the following seven functional categories: (1) physical reef creation, (2) positive density dependence, (3) refugia from physical stress, (4) refugia from biological stress, (5) biodiversity enhancement, (6) settlement improvement, and (7) long-distance facilitation. We discuss each category of positive interaction and how restoration practitioners can use knowledge of such processes to enhance restoration success. We propose that systematic incorporation of positive species interactions into restoration practice will both enhance ecological services provided by restored reefs and increase restoration success

    Effect of Carbon Dioxide on the Twinkling Artifact in Ultrasound Imaging of Kidney Stones: A Pilot Study

    Get PDF
    Bone demineralization, dehydration and stasis put astronauts at increased risk of forming kidney stones in space. The color-Doppler ultrasound "twinkling artifact," which highlights kidney stones with color, can make stones readily detectable with ultrasound; however, our previous results suggest twinkling is caused by microbubbles on the stone surface which could be affected by the elevated levels of carbon dioxide found on space vehicles. Four pigs were implanted with kidney stones and imaged with ultrasound while the anesthetic carrier gas oscillated between oxygen and air containing 0.8% carbon dioxide. On exposure of the pigs to 0.8% carbon dioxide, twinkling was significantly reduced after 9-25 min and recovered when the carrier gas returned to oxygen. These trends repeated when pigs were again exposed to 0.8% carbon dioxide followed by oxygen. The reduction of twinkling caused by exposure to elevated carbon dioxide may make kidney stone detection with twinkling difficult in current space vehicles

    A supramolecular view on the cooperative role of Brønsted and Lewis acid sites in zeolites for methanol conversion

    Get PDF
    A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Bronsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Bronsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH](+) and double protonated binuclear metal clusters [M(mu-OH)(2)M](2+) (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Bronsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Bronsted and Lewis acid sites

    Comparison of Tissue Injury from Focused Ultrasonic Propulsion of Kidney Stones Versus Extracorporeal Shock Wave Lithotripsy

    Get PDF
    Purpose Focused ultrasonic propulsion is a new non-invasive technique designed to move kidney stones and stone fragments out of the urinary collecting system. However, the extent of tissue injury associated with this technique is not known. As such, we quantitated the amount of tissue injury produced by focused ultrasonic propulsion under simulated clinical treatment conditions, and under conditions of higher power or continuous duty cycles, and compared those results to SWL injury. Materials and Methods A human calcium oxalate monohydrate stone and/or nickel beads were implanted (with ureteroscopy) into 3 kidneys of live pigs (45–55 kg) and repositioned using focused ultrasonic propulsion. Additional pig kidneys were exposed to SWL level pulse intensities or continuous ultrasound exposure of 10 minutes duration (ultrasound probe either transcutaneous or on the kidney). These kidneys were compared to 6 kidneys treated with an unmodified Dornier HM3 Lithotripter (2400 shocks, 120 SWs/min and 24 kV). Histological analysis was performed to assess the volume of hemorrhagic tissue injury created by each technique (% functional renal volume, FRV). Results SWL produced a lesion of 1.56±0.45% FRV. Ultrasonic propulsion produced no detectable lesion with the simulated clinical treatment. A lesion of 0.46±0.37% FRV or 1.15±0.49% FRV could be produced if excessive treatment parameters were used while the ultrasound probe was placed on the kidney. Conclusions Focused ultrasonic propulsion produced no detectable morphological injury to the renal parenchyma when using clinical treatment parameters and produced injury comparable in size to SWL when using excessive treatment parameters
    corecore