51,989 research outputs found

    Composite fermion model for entanglement spectrum of fractional quantum Hall states

    Get PDF
    We show that the entanglement spectrum associated with a certain class of strongly correlated many-body states --- the wave functions proposed by Laughlin and Jain to describe the fractional quantum Hall effect --- can be very well described in terms of a simple model of non-interacting (or weakly interacting) composite fermions.Comment: 6 pages, 2 figure

    The Formation of Galactic Disks

    Full text link
    We study the population of galactic disks expected in current hierarchical clustering models for structure formation. A rotationally supported disk with exponential surface density profile is assumed to form with a mass and angular momentum which are fixed fractions of those of its surrounding dark halo. We assume that haloes respond adiabatically to disk formation, and that only stable disks can correspond to real systems. With these assumptions the predicted population can match both present-day disks and the damped Lyman alpha absorbers in QSO spectra. Good agreement is found provided: (i) the masses of disks are a few percent of those of their haloes; (ii) the specific angular momenta of disks are similar to those of their haloes; (iii) present-day disks were assembled recently (at z<1). In particular, the observed scatter in the size-rotation velocity plane is reproduced, as is the slope and scatter of the Tully-Fisher relation. The zero-point of the TF relation is matched for a stellar mass-to-light ratio of 1 to 2 h in the I-band, consistent with observational values derived from disk dynamics. High redshift disks are predicted to be small and dense, and could plausibly merge together to form the observed population of elliptical galaxies. In many (but not all) currently popular cosmogonies, disks with rotation velocities exceeding 200 km/s can account for a third or more of the observed damped Lyman alpha systems at z=2.5. Half of the lines-of-sight to such systems are predicted to intersect the absorber at r>3kpc/h and about 10% at r>10kpc/h. The cross-section for absorption is strongly weighted towards disks with large angular momentum and so large size for their mass. The galaxy population associated with damped absorbers should thus be biased towards low surface brightness systems.Comment: 47 pages, Latex, aaspp4.sty, 14 figs included, submitted to MNRA

    Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics

    Get PDF
    A new method is presented to study supersymmetric quantum mechanics. Using relative scattering techniques, basic relations are derived between Krein’s spectral shift function, the Witten index, and the anomaly. The topological invariance of the spectral shift function is discussed. The power of this method is illustrated by treating various models and calculating explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a complete treatment of the two‐dimensional magnetic field problem is given, without assuming that the magnetic flux is quantized

    The use of interleaving for reducing radio loss in convolutionally coded systems

    Get PDF
    The use of interleaving after convolutional coding and deinterleaving before Viterbi decoding is proposed. This effectively reduces radio loss at low-loop Signal to Noise Ratios (SNRs) by several decibels and at high-loop SNRs by a few tenths of a decibel. Performance of the coded system can further be enhanced if the modulation index is optimized for this system. This will correspond to a reduction of bit SNR at a certain bit error rate for the overall system. The introduction of interleaving/deinterleaving into communication systems designed for future deep space missions does not substantially complicate their hardware design or increase their system cost

    Nano-scale mechanical probing of supported lipid bilayers with atomic force microscopy

    Full text link
    We present theory and experiments for the force-distance curve F(z0)F(z_0) of an atomic force microscope (AFM) tip (radius RR) indenting a supported fluid bilayer (thickness 2d2d). For realistic conditions the force is dominated by the area compressibility modulus ÎșA\kappa_A of the bilayer, and, to an excellent approximation, given by F=πÎșARz02/(2d−z0)2F= \pi \kappa_A R z_0^2/(2d-z_0)^2. The experimental AFM force curves from coexisting liquid ordered and liquid disordered domains in 3-component lipid bilayers are well-described by our model, and provides ÎșA\kappa_A in agreement with literature values. The liquid ordered phase has a yield like response that we model by hydrogen bond breaking.Comment: 6 pages, 6 figures, accepted for publication in Physical Review
    • 

    corecore