12 research outputs found

    UK Head and neck cancer surgical capacity during the second wave of the COVID—19 pandemic: Have we learned the lessons? COVIDSurg collaborative

    Get PDF
    Objectives The aim of this study was to evaluate the differences in surgical capacity for head and neck cancer in the UK between the first wave (March-June 2020) and the current wave (Jan-Feb 2021) of the COVID-19 pandemic. Design REDcap online-based survey of hospital capacity. Setting UK secondary and tertiary hospitals providing head and neck cancer surgery. Participants One representative per hospital was asked to report the capacity for head and neck cancer surgery in that institution. Main outcome measures The principal measures of interests were new patient referrals, capacity in outpatients, theatres and critical care; therapeutic compromises constituting delay to surgery, de-escalated surgery and therapeutic migration to non-surgical primary modality. Results Data were returned from approximately 95% of UK hospitals with a head and neck cancer surgery specialist service. 50% of UK head and neck cancer patients requiring surgery have significantly compromised treatments during the second wave: 28% delayed, 10% have received radiotherapy-based treatment instead of surgery, and 12% have received de-escalated surgery. Surgical capacity has been more severely constrained in the second wave (58% of pre-pandemic level) compared with the first wave (62%) despite the time to prepare. Conclusions Some hospitals are overwhelmed by COVID-19 and unable to offer essential cancer surgery, but all have neighbouring hospitals in their region retaining good (or even normal) capacity. It is noteworthy that very few patients have been appropriately redirected away from the hospitals most constrained by their burden of COVID-19. The paucity of an effective central or regional strategic response to this evident mismatch between demand and surgical capacity is to the detriment of our head and neck cancer patients

    COVID-19-related absence among surgeons: development of an international surgical workforce prediction model

    Get PDF
    Background: During the initial COVID-19 outbreak up to 28.4 million elective operations were cancelled worldwide, in part owing to concerns that it would be unsustainable to maintain elective surgery capacity because of COVID-19-related surgeon absence. Although many hospitals are now recovering, surgical teams need strategies to prepare for future outbreaks. This study aimed to develop a framework to predict elective surgery capacity during future COVID-19 outbreaks. Methods: An international cross-sectional study determined real-world COVID-19-related absence rates among surgeons. COVID-19-related absences included sickness, self-isolation, shielding, and caring for family. To estimate elective surgical capacity during future outbreaks, an expert elicitation study was undertaken with senior surgeons to determine the minimum surgical staff required to provide surgical services while maintaining a range of elective surgery volumes (0, 25, 50 or 75 per cent). Results Based on data from 364 hospitals across 65 countries, the COVID-19-related absence rate during the initial 6 weeks of the outbreak ranged from 20.5 to 24.7 per cent (mean average fortnightly). In weeks 7–12, this decreased to 9.2–13.8 per cent. At all times during the COVID-19 outbreak there was predicted to be sufficient surgical staff available to maintain at least 75 per cent of regular elective surgical volume. Overall, there was predicted capacity for surgeon redeployment to support the wider hospital response to COVID-19. Conclusion: This framework will inform elective surgical service planning during future COVID-19 outbreaks. In most settings, surgeon absence is unlikely to be the factor limiting elective surgery capacity

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    No full text
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p<0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p<0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p<0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    No full text
    Background The 2015 lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs.Methods First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5,2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score.Findings In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 dinicians (23133%) women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45.6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84.5 (95% CI 84.1-84.9), which varied between HIC (88.5 189.0-88.0]), MIC (81.8 [82.5-81.1]), and LIC (66.8 [64.9-68.7]) settings. In the third phase, 1217 (74.6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51.4%) were from HIC, 538 (44.2%) from MIC, and 54 (4.4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3.6% (95% CI 3.0-4.1; p&lt;0.0001) increase in SVR. This was consistent in HIC (4.8% [4.1-5.5]; p&lt;0.0001), MIC (2.8 [2.0-3.7]; p&lt;0.0001), and LIC (3.8 [1.3-6 . 7%]; p&lt;0.0001) settings.Interpretation The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd

    SARS-CoV-2 infection and venous thromboembolism after surgery: an international prospective cohort study

    Full text link
    SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30&nbsp;days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7&nbsp;days before to 30&nbsp;days after surgery); recent (1&ndash;6&nbsp;weeks before surgery); previous (&ge;7&nbsp;weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1&ndash;2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2&ndash;3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9&ndash;3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality (5.4 (95%CI 4.3&ndash;6.7)). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly

    Effect of COVID-19 pandemic lockdowns on planned cancer surgery for 15 tumour types in 61 countries: an international, prospective, cohort study

    Get PDF
    Background: Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods: This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index &lt;20), moderate lockdowns (20–60), and full lockdowns (&gt;60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov, NCT04384926. Findings: Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p&lt;0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p&lt;0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p&lt;0·001), and full lockdowns (0·57, 0·54–0·60; p&lt;0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11 827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation: Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include protected elective surgical pathways and long-term investment in surge capacity for acute care during public health emergencies to protect elective staff and services. Funding: National Institute for Health Research Global Health Research Unit, Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, Medtronic, Sarcoma UK, The Urology Foundation, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore