137 research outputs found
Parenteral Transmission of the Novel Human Parvovirus PARV4
Transmission routes of PARV4, a newly discovered human parvovirus, were investigated by determining frequencies of persistent infections using autopsy samples from different risk groups. Predominantly parenteral routes of transmission were demonstrated by infection restricted to injection drug users and persons with hemophilia and absence of infection in homosexual men with AIDS and low-risk controls
Role of filtration in managing the risk from Cryptosporidium in commercial swimming pools – a review
Most commercial swimming pools use pressurised filters, typically containing sand media, to remove suspended solids as part of the water treatment process designed to keep water attractive, clean and safe. The accidental release of faecal material by bathers presents a poorly quantified risk to the safety of swimmers using the pool. The water treatment process usually includes a combination of maintaining a residual concentration of an appropriate biocide in the pool together with filtration to physically remove particles, including microbial pathogens, from the water. However, there is uncertainty about the effectiveness of treatment processes in removing all pathogens, and there has been growing concern about the number of reported outbreaks of the gastrointestinal disease cryptosporidiosis, caused by the chlorine-resistant protozoan parasite Cryptosporidium. A number of interacting issues influence the effectiveness of filtration for the removal of Cryptosporidium oocysts from swimming pools. This review explains the mechanisms by which filters remove particles of different sizes (including oocyst-sized particles, typically 4–6 μm), factors that affect the efficiency of particle removal (such as filtration velocity), current recommended management practices, and identifies further work to support the development of a risk-based management approach for the management of waterborne disease outbreaks from swimming pools
Multisensory medical illustrations of Buruli ulcer for improved disease detection, help seeking behaviour and adherence to treatment
Buruli ulcer (BU) is a skin infection caused by Mycobacterium ulcerans and a neglected tropical disease of the skin (skin NTD). Antibiotic treatments are available but, to be effective in the absence of surgery, BU must be detected at its earliest stages (an innocuous-looking lump under the skin) and adherence to prescribed drugs must be high. This study aimed to develop multisensory medical illustrations of BU to support communication with at-risk communities. We used a Think Aloud method to explore community health workers’ (n = 6) experiences of BU with a focus on the role of their five senses, since these non-medical disease experts are familiar with the day-to-day challenges presented by BU. Thematic analysis of the transcripts identified three key themes relating to ‘Detection,’ ‘Help Seeking,’ and ‘Adherence’ with a transcending theme ‘Senses as key facilitators of health care’. New medical illustrations, for which we coin the phrase “5D illustrations” (signifying the contribution of the five senses) were then developed to reflect these themes. The senses therefore facilitated an enriched narrative enabling the production of relevant and useful visuals for health communication. The medical artist community could utilise sensory experiences to create dynamic medical illustrations for use in practice.</p
Occurrence of Cryptosporidium Oocysts in Leisure Pools in the UK, 2017, and Modelling of Oocyst Contamination Events
Cryptosporidium is a major cause of diarrhoea outbreaks linked to swimming pools, but little is known about the frequency of contamination. The primary aim was to investigate the occurrence and concentration, through sampling and modelling, of Cryptosporidium oocysts in leisure pools. Secondary aims were to compare detections with operational parameters, provide the evidence-base for guidance, and improve sampling capacity and interpretation for public health investigations. Up to 1000 L pool water was sampled during swim sessions once weekly for 10 weeks from 8 August 2017 at six volunteer pools. Oocysts were detected by microscopy in 12/59 (20%) pool water samples, at least once in each pool; 8/12 (66%) detections were in August when bather loads were highest. At three pools, 1 L filter backwash was sampled weekly and oocysts were detected in 2/29 (7%) samples, following detections in pool water. The probabilities of a bather contaminating the pool ranged from 1 in 1000 to over 1 in 10,000. Monte Carlo analysis showed that when high bather numbers caused contamination on over 70% of days, multiple events per day were more likely than single events. In these generally well-managed leisure pools, Cryptosporidium risk related to high bather loads. We conclude that public awareness campaigns for bather hygiene, and reminding pool operators of current guidance for managing faecal accidents, should be ahead of peak swim season
Recommended from our members
The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER.
Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive) proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactone's observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate cytokines, but also the loss of membrane receptors, adhesion molecules and T-cell cytokines that drive the aetiology of Buruli ulcer
Inhibition of Sec61-dependent translocation by mycolactone uncouples the integrated stress response from ER stress, driving cytotoxicity via translational activation of ATF4
Mycolactone is the exotoxin virulence factor of Mycobacterium ulcerans that causes the neglected tropical disease Buruli ulcer. We recently showed it to be a broad spectrum inhibitor of Sec61-dependent co-translational translocation of proteins into the endoplasmic reticulum (ER). An outstanding question is the molecular pathway linking this to its known cytotoxicity. We have now used translational profiling to better understand the reprogramming that occurs in cells exposed to mycolactone. Gene ontology identified enrichment in genes involved in cellular response to stress, and apoptosis signalling among those showing enhanced translation. Validation of these results supports a mechanism by which mycolactone activates an integrated stress response meditated by phosphorylation of eIF2α via multiple kinases (PERK, GCN, PKR) without activation of the ER stress sensors IRE1 or ATF6. The response therefore uncouples the integrated stress response from ER stress, and features translational and transcriptional modes of genes expression that feature the key regulatory transcription factor ATF4. Emphasising the importance of this uncoupled response in cytotoxicity, downstream activation of this pathway is abolished in cells expressing mycolactone-resistant Sec61α variants. Using multiple genetic and biochemical approaches, we demonstrate that eIF2α phosphorylation is responsible for mycolactone-dependent translation attenuation, which initially protects cells from cell death. However, chronic activation without stress remediation enhances autophagy and apoptosis of cells by a pathway facilitated by ATF4 and CHOP. Our findings demonstrate that priming events at the ER can result in the sensing of stress within different cellular compartments
The one that got away: how macrophage-derived IL-1beta escapes the mycolactone-dependent Sec61 blockade in Buruli Ulcer
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is the major cellular target of mycolactone explains much of the disease pathology, including the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation pathway proteins and costimulatory molecules. However, there has long been evidence that the immune system is not completely incapable of responding to M. ulcerans infection. In particular, IL-1β was recently shown to be present in BU lesions, and to be induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner. This has important implications for our understanding of BU, showing that mycolactone can act as the “second signal” for IL-1β production without inhibiting the pathways of unconventional secretion it uses for cellular release. In this Perspective article, we validate and discuss this recent advance, which is entirely in-line with our understanding of mycolactone’s inhibition of the Sec61 translocon. However, we also show that the IL-1 receptor, which uses the conventional secretory pathway, is sensitive to mycolactone blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating IL-1β function in skin tissue, including the transient intra-macrophage stage of M. ulcerans infection, is urgently needed to uncover the double-edged sword of IL-1β in BU pathogenesis, treatment and wound healing
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
- …