3,584 research outputs found
An RLL code design that maximises channel utilisation
Comprehensive (d,k) sequences study is presented, complemented with the design of a new, efficient, Run-Length Limited (RLL) code. The new code belongs to group of constrained coding schemas with a coding rate of R = 2/5 and with the minimum run length between two successive transitions equal to 4. Presented RLL (4, oo) code uses channel capacity highly efficiently, with 98.7% and consequently it achieves a high-density rate of DR = 2.0. It is implying that two bits can be recorded, or transmitted with one transition. Coding techniques based on the presented constraints and the selected coding rate have better efficiency than many other currently used codes for high density optical recording and transmission
On the performance of sampling-based optimal motion planners
Sampling based algorithms provide efficient methods of solving robot motion planning problem. The advantage of these approaches is the ease of their implementation and their computational efficiency. These algorithms are probabilistically complete i.e. they will find a solution if one exists, given a suitable run time. The drawback of sampling based planners is that there is no guarantee of the quality of their solutions. In fact, it was proven that their probability of reaching an optimal solution approaches zero. A breakthrough in sampling planning was the proposal of optimal based sampling planners. Current optimal planners are characterized with asymptotic optimality i.e. they reach an optimal solutions as time approaches infinity. Motivated by the slow convergence of optimal planners, post-processing and heuristic approach have been suggested. Due to the nature of the sampling based planners, their implementation requires tuning and selection of a large number of parameters that are often overlooked. This paper presents the performance study of an optimal planner under different parameters and heuristics. We also propose a modification in the algorithm to improve the convergence rate towards an optimal solution
Examining the use of B-splines in parking assist systems
The main objective of the presented study and simulations conducted was to investigate the prospect of using B-spline curves for the automatic parking, i.e. self-driving, or intelligent vehicles. We consider the problem of parallel parking for a non-holonomic vehicle with a known maximum path curvature. The relationship between the properties of the path and the geometry of corresponding parking spot is revealed. The unique properties of B-splines are exploited to synthesize a path that is smooth and of continuous curvature. The contributions of this project are in the generations of better, smooth continuous paths. This improves passenger comfort during the parallel parking maneuver and allow vehicles to park in tighter spots by increasing the feasible range of the parking manoeuver
Stark Broadening of in III Lines in Astrophysical and Laboratory Plasma
Besides the need of Stark broadening parameters for a number of problems in
physics, and plasma technology, in hot star atmospheres the conditions exist
where Stark widths are comparable and even larger than the thermal Doppler
widths. Using the semiclassical perturbation method we investigated here the
influence of collisions with charged particles for In III spectral lines. We
determined a number of Stark broadening parameters important for the
investigation of plasmas in the atmospheres of A-type stars and white dwarfs.
Also, we have compared the obtained results with existing experimental data.
The results will be included in the STARK-B database, the Virtual Atomic and
Molecular Data Center and the Serbian Virtual Observatory
Holistic educational development integrated through mechatronics design
This paper presents an approach in educational development of resources and programs based on multidisciplinary concept. The development is built around the process of mechatronics program delivery that is currently introduced in tertiary education within RMIT University. Mechatronics is a multidisciplinary engineering area that incorporates mechanical, electrical, electronics, computer and information systems. Students studying Mechatronics Engineering expand their knowledge of various systems and scientific areas and integrate them in a working system. Through work integrated learning, students are encouraged to obtain new knowledge and skills by doing the job, not just learning from the textbooks and attending lectures. Subject material is delivered in variety of ways, started with face-to-face delivery, seminars, tutorials and lab sessions. The key component of this education is project work conducted in small teams. Finally, University conducts surveys after every single subject delivery and the results of the latest survey are presented here. According to the survey, students are extremely satisfied with the new approach that focuses on problem solving, project and exploration work
Forming norms: informing diagnosis and management in sports medicine
Clinicians aim to identify abnormalities, and distinguish harmful from harmless abnormalities. In sports medicine, measures of physical function such as strength, balance and joint flexibility are used as diagnostic tools to identify causes of pain and disability and monitor progression in response to an intervention. Comparing results from clinical measures against ‘normal’ values guides decision-making regarding health outcomes. Understanding ‘normal’ is therefore central to appropriate management of disease and disability. However, ‘normal’ is difficult to clarify and definitions are dependent on context. ‘Normal’ in the clinical setting is best understood as an appropriate state of physical function. Particularly as disease, pain and sickness are expected occurrences of being human, understanding ‘normal’ at each stage of the lifespan is essential to avoid the medicalisation of usual life processes. Clinicians use physical measures to assess physical function and identify disability. Accurate diagnosis hinges on access to ‘normal’ reference values for such measures. However our knowledge of ‘normal’ for many clinical measures in sports medicine is limited. Improved knowledge of normal physical function across the lifespan will assist greatly in the diagnosis and management of pain, disease and disability
Enhancing learning experience by collaborative industrial projects
This paper presents how collaborative industrial project are embedded into engineering curriculum at two departments: School of Science and the School of Engineering, at RMIT University, Australia. We introduce general structure of the industrial projects as Work Integrated Learning (WIL) modules, as well as provide a number of examples of recently completed projects. Industrial summer projects, which were running in the years 2015/16 in collaboration with ANZ, ABB, Alfred Hospital, etc., were pipelined with final year projects from the School of Engineering as well as with the Software Engineering Projects (Bachelor and Master level) from the School of Science. The goal of these projects was to enable continuity of activities as per industry requirements and enhance learning experience, as well as, employability of the students. All the projects were successfully completed, also receiving positive feedback from industry partners. Some of the projects led to student's employment within the companies that have sponsored the projects. With this approach, Future Designers Grant from the Department of State Development, Business and Innovation, Victoria, was efficiently implemented and a new product developed. After receiving Bosch Venture Forum Award in Germany, in June 2015 industry collaboration has extended to new partner, School of Science and activities continued over the summer. New design is implanted as well as large number of improvements
Event anisotropy in 4.2A GeV/c C+C collisions
The directed and elliptic flow of protons and negative pions in 4.2A GeV/c
C+C collisions is studied using the Fourier analysis of azimuthal
distributions. It is found that the protons exhibit pronounced directed flow,
while the flow of pions is either non existent or too weak to be detected
experimentally. Also, it is found that in the entire rapidity interval the
elliptic flow is very small if not zero. These results are confirmed by the
Quark-Gluon-String Model (QGSM) and the relativistic transport model (ART 1.0),
except that these models predict very weak antiflow of pions. The more detailed
comparison with the QGSM suggests that the decay of resonances and rescattering
of secondaries dominantly determine the proton and negative pion flow at this
energy.Comment: 7 pages, 3 figures, TeX file changed from double to single-spacin
Autonomous robots path planning: An adaptive roadmap approach
Developing algorithms that allow robots to independently navigate unknown environments is a widely researched area of robotics. The potential for autonomous mobile robots use, in industrial and military applications, is boundless. Path planning entails computing a collision free path from a robots current position to a desired target. The problem of path planning for these robots remains underdeveloped. Computational complexity, path optimization and robustness are some of the issues that arise. Current algorithms do not generate general solutions for different situations and require user experience and optimization. Classical algorithms are computationally extensive. This reduces the possibility of their use in real time applications. Additionally, classical algorithms do not allow for any control over attributes of the generated path. A new roadmap path planning algorithm is proposed in this paper. This method generates waypoints, through which the robot can avoid obstacles and reach its goal. At the heart of this algorithm is a method to control the distance of the waypoints from obstacles, without increasing its computational complexity. Several simulations were run to illustrate the robustness and adaptability of this approach, compared to the most commonly used path planning methods
- …
