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Abstract: Comprehensive (d,k) sequences study is presented, complemented with the design of a 
new, efficient, Run-Length Limited (RLL) code. The new code belongs to group of constrained 
coding schemas with a coding rate of R = 2/5 and with the minimum runlength between two 
successive transitions equal to 4. Presented RLL (4, ∞) code uses channel capacity highly 
efficiently, with 98.7% and consequently it achieves a high-density rate of DR = 2.0. It is 
implying that two bits can be recorded, or transmitted with one transition. Coding techniques 
based on the presented constraints and the selected coding rate have better efficiency than many 
other currently used codes for high density optical recording and transmission. 
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recording; optical recording; near-field optical recording. 
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1 Introduction 

1.1 Communication channel modelling 

Coding, in general, is a change of data representation from 
one alphabet into another, in order to fulfil a certain task in 
data processing or communications/recording. Line coding is 
translation of arbitrary data streams into suitable streams of 
symbols that can be accepted by the constrained channels.  
All physical channels, like electrical/electronic types, using 
electrical voltage, or current, as signal elements, or magnetic, 
optical, magneto-optical and other, using various types of 
physical quantities have their limitations.  

Various RLL coding techniques, applied for line coding 
in digital data recording and communications, are designed  
 

to best suit baseband physical channel constraints. Those 
constraints are expressed in terms of spectrum limitations, 
needs for minimisation of Inter Symbol Interference (ISI) 
and efficiency in data transmission, or recording. Although, 
in every communication system, other coding techniques  
are employed to deal with errors, some error propagation 
limiting capability of the RLL coding is extremely helpful. 
This is particularly important when dealing with the symbol 
streams, i.e. codewords that have variable length, or state 
dependent RLL coding is applied.  

Suitable symbol streams, used in RLL coding, known as 
(d,k) sequences, express discrete noiseless channels of the 
type defined by Shannon (1948), in which restrictions can 
be represented by sequential Finite State Machines (FSM), 
as shown in Figure 1. 
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Figure 1 Channel model, i.e. FSM model of (d,k) = (5,12) constrained sequences 
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In the presented FSM model of a (d,k) constrained channel 

 Parameter d > 0 reflects ISI; 

 Second parameter k < ∞ is responsible for self-clocking; 

 Where, usually code rules require that: 

k ≤ M, for (M = 1,2,3,4,5,6,7,…Mmax), 

to ensure synchronisation at the receivers side and 

 d and k together define signal spectrum. 

In general, physical constraints of the channel are reflecting 
spectral shaping, self-timing (clock imbedded) and limitation 
on inter-symbol interference. A well-designed line code 
should have the following characteristics: 

 No DC component 

 Self-clocking is supported 

 Some error detection capabilities especially  
error propagation limitation 

 Physical channel required spectrum shaping  
is achievable.  

To summarise, signal sequences are selected to match the 
characteristics of the channel, which is one of the main 
advantages of digital communications. 

Binary stream, (d,k) constrained is basically a Non 
Return to Zero (NRZ) data representation. All RLL coding 
techniques apply pre-coding to that stream by use of NRZ 
Inverted (NRZI) scheme. If NRZ data are given as: 

   ; 0 ; 0,1i iX i X    (1) 

then 

   ; 0 ; 0,1i iY i Y    (2) 

represents NRZI data after pre-coding.  
This, NRZI application is expressed by a logical 

equation as:  

1i i iY Y X   (3) 

which derives as 

0 1 1i i iY X X X X      (4) 

Since the symbol  represents module 2 addition, or 
Exclusive OR logic function, XOR, this whole transformation 
is also known as integration by module 2. As a result of this 
integration process, generated sequences given by equation (2) 
possess the property that the maximum and the minimum 
runlengths, i.e. number of consecutive like symbols, are 
limited between (d + 1) and (k + 1) symbol intervals. This can 
be clearly seen from the example shown in Table 1. 

Table 1 An example of (d,k) = (1,3) constrained sequences 
shown as Xi, before, and after NRZI precoding, as Yi 

Xi 0 1 0 1 0 0 1 0 0 0 1 

Yi 0 1 1 0 0 0 1 1 1 1 0 

Blahut (1990) has given a comprehensive picture of digital 
transmission of information, put in the context and 
explained the role that each type of encoding techniques 
plays in a communication system. Standard concatenation 
scheme which Blahut employs is shown in Figure 2. It has 
been widely used in communications, optical and magnetic 
recording for many years. 

Figure 2 Standard source and channel coding model 
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As shown in Figure 2, Error-Correcting Coding (ECC) is 
applied before line coding, i.e. RLL coding. RLL decoding 
is usually performed by the use of a look-ahead register. 
Coding techniques sequence arrangement, as shown in 
Figure 2, degrades Bit Error Rate (BER). In order to better 
control error propagation, another type of sequencing could 
be applied. In that changed concatenation scenario, ECC 
and RLL encoders’ positions, in the channel coding part of 
the communication systems, are rearranged as shown in 
Figure 3. This is known as Low Density Parity Check 
(LDPC) coded Bliss scheme for RLL coding. LDPC 
generator will output non-constrained codewords. That is 
the reason to apply second RLL encoder in parity line and it 
is the same as the first RLL encoder.  

Figure 3 Channel coding arrangement with LDPC-coded Bliss 
scheme (see online version for colours) 
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1.2 Some familiar constrained coding schemes 

The Manchester coding scheme, used in digital 
communications and in magnetic recording, can be seen as 
an RLL(0,1) coding, with coding rate R = 1/2 and the 
density rate of DR = 0.5. This code is a simple scheme 
which has good self-clocking characteristic; however the 
channel capacity is not used efficiently. 

Another popular technique, Miller code, with the same 
coding rate of R = 1/2 and density DR = 1.0, is two times more 
efficient than Manchester and can be seen as RLL(1,3) coding.  

It was shown (Simic and Petrovic, 1989; Simic and 
Petrovic, 1991) that an additional step forward can be 
achieved with the coding techniques based on RLL(5,k) 
constraints, where k = (12 – ∞). Coding rate is R = 1/3 and 
the density rate achieved is DR = 2.0. Recently, a selected 
RLL codes’ performance investigation results were 
published as an outcome of the joint Sony and Philips 
research project in the area of high-density optical recording 
(Haibin et al., 2007). Performance of RLL codes with 
different d constraints were analysed, for LDPC-coded Bliss 
scheme and for the standard concatenation scheme. RLL 
coding schemes with d = 0, 1, 2 and 5 were investigated for 
the application in the near-field optical recording.  

1.3 Research in optical channels 

Constrained, run-length limited coding is applied across a 
variety of physical channels for digital communication and 
for the recording. This is a quick look at the applications in a 
relatively new technology area: Blue-ray storage systems. By 
using a Solid Immersion Lens (SIL) that flies over the disc, 
near-field optical recording achieves high-numerical aperture 
(NA) (Verschuren et al., 2006). The distance between the lens 
and the disc is just few tens of nanometres. Numerical 
aperture is a key factor of feasible storage capacity.  

In addition to that, new discovered techniques could be 
applied to any other baseband channel. Finally, results in 
near-field optical recording and holographic data storage are 
also applicable in other research areas (Park et al., 2011). 
The benefits from the emerging technologies are new 
memories small physical size, high-position accuracy and 
low-production costs. An example of optical physical 
channel is shown in Figure 4. 

Figure 4 A near-field optical recording system with aperture 
(see online version for colours) 

 

Apart from the efficient data storage, applications of the 
new optical technology include near-field optics-based 
microscopy, new imaging systems of the small size, 
plasmonic nanolithography using an SIL, nanoscale 
aperture, bio-applications and other. 

2 Constrained channel capacity 

2.1 Coding with constrained (d,k) sequences 

Most coding techniques employed in a communication 
system can be conducted as block coding, where 
unconstrained input data sequences of length m are mapped 
to the constrained output sequences, of the length n. In the 
case of unconstrained coding, and when both input and the 
output sides of an encoder use binary alphabet for data 
representation and the codewords, it is obvious that the 
following expression must be fulfilled:  

2 2m n  (5) 

Similarly, when constrained coding is applied the number of 
constrained sequences available, Ndk(n), must be equal, or 
larger than the number of input, unconstrained sequences. If 
a binary system, with the alphabet B = (0,1), is used for the 
unconstrained alphabet at the input, and for the constrained 
output sequences, i.e. codewords generation, then the same 
basic coding requirement is expressed as:  

 2m
dkN n  (6) 

Although constrained sequences comply with channel 
requirements they have less information capacity, C(d,k).  
In order to compensate for this loss, clock rate has to be 
increased as given: 

/CLR n m  (7) 

Increasing the clock rate shortens the bit window.  
Thanks to the limitation introduced as minimum number 

of new bit windows between successive transitions, 
constrained coding archives longer periods between two 
transitions. That is used as a measure of code efficiency, or 
density rate (DR) attained.  

In addition to block coding, Variable Length (VL) 
coding can also be conducted. In both cases, coding has to 
be synchronous, which means that the bit per symbol ratio, 
coding rate R is constant over each data word mapping, and 
it is given as: 

/ 1R m n CLR   (8) 

Coding efficiency, or density ratio of an RLL code, is the 
ratio of the minimum signal transitions timing and data bits 
timing. It is expressed as following: 

 _ min 1out

in

T
DR R d

T
    (9) 

In the above expression symbol Tin represents input  
data strings bit window, while Tout_min corresponds to the 
minimum time interval between output signal transitions. 
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Referring to equation (6), the number of codewords 
available for the given (d,k) constraints has to be identified. 
Recursion relations, derived to define this number, are  
given by Tang and Bahl (1970). It can be shown that the 
characteristic equation of (d,k) sequences is given as: 

2 1 1 1 0k k k dZ Z Z        (10) 

Characteristic equation incorporates particular cases when 
d = 0, and when k = ∞. Information capacity of the 
constrained sequences is set as: 

  2, logC d k   (11) 

where λ is the largest positive root of equation (10). The 
maximum capacity can be obtained for large values of 
parameter k, as: 

 max 2l im , log d
k

C C d k 


   (12) 

Table 2 shows the capacity of d constrained sequences, 
C(d,∞) = C(d) and the corresponding maximum achievable 
density ratio, i.e. coding efficiency, for the values of d =  
(0, 1,…,10). Table 3 presents the selected channels’ capacity 
and the coding efficiency that could be achieved, with the 
coding techniques for the various values of the parameter d 
and the finite values of the second constraint, k. It can be 
seen from Tables 2 and 3, that with the values of first 
constraint, d < 4 a significant increase of the density rate of 
up to 2 and above is not possible. Finally, from Table 3, it 
could be observed what could be the minimum possible 
values of parameter k that would still give us efficiency 
above 2.0. For k = 4 it is 16 and for the k = 5 it is 12. The 
first versions of RLL(5,16) coding technique, with data rate 
R = 1/3 and the density rate DR = 2.0, was presented by 
Simic and Petrovic (1989) and the second one with better 
error propagation limitation was published in the work of 
Simic and Petrovic (1991). Much later Haibin et al. (2007) 
reported on considering the use of this class of codes,  
with R = 1/3 and d = 5 for the applications in near-field 
optical recording, for the new generations of Blu-ray  
(BD) discs. 

Table 2 Capacity and coding efficiency of (d,∞) constrained 
sequences 

d Capacity Efficiency [bits per transition] 

0 1.000 1.000 

 0.694 1.338 

2 0.551 1.654 

3 0.464 1.859 

4 0.405 2.028 

5 0.361 2.171 

6 0.328 2.297 

7 0.301 2.408 

8 0.278 2.508 

9 0.260 2.600 

10 0.244 2.684 

Table 3 Capacity and coding efficiency as functions of d and 
k constraints 

D k Capacity C(d,k) Efficiency [bits per transition] 

0 1 0.694 0.694 

0 3 0.947 0.947 

1 3 0.551 1.102 

1 7 0.679 1.358 

2 7 0.517 1.551 

3 7 0.406 1.629 

3 11 0.452 1.808 

3 17 0.463 1.852 

4 9 0.362 1.810 

4 12 0.389 1.946 

4 15 0.399 1.995 

4 16 0.400 2.004 

5 11 0.328 1.969 

5 12 0.336 2.021 

5 13 0.343 2.059 

5 14 0.345 2.075 

5 15 0.351 2.107 

5 16 0.353 2.122 

5 17 0.357 2.136 

6 13 0.301 2.107 

6 20 0.324 2.268 

7 15 0.279 2.232 

7 23 0.298 2.284 

7 17 0.260 2.340 

8 26 0.276 2.484 

Just recently a new efficient coding technique was presented 
by Simic (2011). With the coding rate of R = 2/5 and the 
constraint d = 4 it achieves high-density rate of DR = 2.0. 
This paper presents further contribution to that coding 
research. The new coding scheme is designed and a more 
comprehensive approach and presentation of the encoding 
and decoding solutions are given.  

2.2 Various channel models and encoding schemas 

Many researchers were already looking for the coding 
solutions on various (d,k) channels shown in Table 3. Other 
RLL schemas were designed with the coding rate of 
R = 4/11, and (d,k) = (4,20) achieving density rate of 
DR = 1.818 (Kim and Lee, 1995). There are also RLL codes 
proposed with (d,k) = (4,13), (d,k) = (3,11) and more, all 
with DR below 2.0. 

It is much harder to define coding schemas when the 
coding rate is close to the capacity of the given (d,k) 
channel. An interesting study on successful allocation of 
codewords to the encoder states to maximise the code rate is 
given in Cai and Immink’s (2006). The study shows that the 
number of encoder states, for the certain RLL codes, can 
always be associated with generalised Fibonacci numbers. 
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Research was conducted for the design of the capacity-
approaching (d,k) codes with d = 1 constraint. It would be 
interesting to generalise this approach for the higher values 
of channel constraints.  

Starting from the beginning, there is already a large 
number of line coding techniques with parameter d = 0 
constraint. The most popular and widely used are unipolar, 
or bipolar, NRZ and NRZI, with many other variations of 
techniques based on those. Finally, as already mentioned, 
Manchester code, which is RLL(0,1), is one of the mostly 
used. For example, IEEE 802.3 standards for LAN and 
MAN employ Manchester coding.  

One of the interesting approaches is the maximum RLL 
coding. Codes from this group are basically RLL(0,k) 
techniques which eliminate predefined, unwanted sequences 
from the output stream of symbols (Van Wijngaarden and 
Immink, 2010).  

Further to this, there are many techniques based on d = 1 
constraint and coding rate of R = 1/2. Again, one of the most 
popular, Miller code was already mentioned here. It is just 
one of the large number of codes designed on (d,k) = (1,k) 
constrains. Some other are: Modified Frequency Modulation 
(MFM) or RLL(1,3), Modified MFM (M2MFM) or 
RLL(1,4), Jordan code and other. Another d = 1 technique 
RLL(1,7) has coding rate of R = 2/3 and achieves better 
density rate of DR = 1.33.  

Among the techniques with d = 2, a well-known 
technique, RLL(2,7) coding, is used for magnetic storage. 
With the coding rate of R = 1/2 it achieves respective 
density rate of DR = 1.5. Eight-to-Fourteen Modulation 
(EFM) is a channel code used by compact discs (CD) that is 
basically RLL(2,10), with the coding rate of R = 8/17 and 
density rate of 24/17 = 1.41.  

One of the streams in the further development of run-
length coding is two dimensional (2D) and three 
dimensional (3D) constrained coding. An investigation in 
application of RLL(0,2) and RLL(3,∞) combined is 
presented in the Sharov and Roth’s (2010) study. Encoder – 
decoder solution is given for a large number of (2D) RLL 
constrained codes in the work of Tal et al. (2009). Sliding 
block decoding is applied in most of the linear, i.e. one-
dimensional (1D), RLL encoding schemas. In the procedure 
shown, a (2D) constraint is converted into (1D) case and 
processed. Multi-dimensional constrained coding becomes 
interesting for optical applications and holographic storage.  

One more encoding schema, from the group of  
run-length codes with d = 4, is RLL(4,18) code with the 
coding rate of R = 1/3 and the density rate of DR = 1.67. It 
was presented and performances were investigated for 
optical storage applications (Yang et al., 2004).  

This was a short review of the coding solutions. The 
new code design is following. When selecting a new coding 
rate the following rule must be obeyed:  

R = m/n < C(d,∞) (13) 

By examining Table 2, for d = 4, it was perceived that the 
coding with the coding rate of R = 2/5 is possible and that 
the channel capacity, in that case, would be used extremely  
 

efficiently. The efficiency of RLL codes, in terms of 
channel information capacity utilisation (Immink, 2001), is 
defined as following: 

η = R/C(d, k) (14) 

For the selected coding rate of R=2/5 it is equal to 98.7%, 
since the following 

R = 2/5 = 0.4 < C(4,∞) = 0.405 (15) 

Chosen coding rate will provide significant density rate of 

DR = R(d+1) = 2.0 (16) 

A comprehensive approach in constrained codes design is 
presented next and a new efficient code for multipurpose 
applications in data recording and communications is 
developed. 

3 New RLL coding schemes solutions 

Constrained codes considered here are from the class of 
trellis codes for data translation. A continuous stream of 
unconstrained data symbols enters the encoder, and another 
stream of (d,k) constrained codeword signals leave the 
encoder. The input data stream is of arbitrary length and is 
so long that the length plays no role in the design of the 
RLL code encoder and decoder. Input is viewed as an 
infinite stream of data symbols. The encoder output is 
consequently an infinite stream of codeword symbols. 

There are various methods for constrained codes design. 
A systematic approach, used here, is based on Adler, 
Coppersmith, Hassner (ACH) technique (Adler et al., 1983). 
In the process of a constrained channel code design, it is 
possible to derive an encoder state transition table, in 
methodical manner, starting from an FSM model of the 
channel constraints. A model of (4,∞) channel is shown in 
Figure 5 and it will used in the design process.  

Figure 5 FSM model of (4, ∞) constrained channel 

 

The original ACH method is based on a complex state 
splitting algorithm. Blahut (1990) introduced more 
mathematical background of the procedure and simplified 
the method. When the efficiency of coding is close to its 
maximum capacity for the given channel it becomes more 
challenging to define translation rules. Finite value of k 
constraint, for any k = ∞ code, can be achieved by 
substitutions applied when too many zeros would occur in 
the channel stream. This approach is used in the case of 
RLL(1,10) coding presented in Coene et al.’s (2006) study. 
Another way to deal with infinity is by applying reverse 
concatenation coding, for storage systems, in which the  
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information is encoded first by a constraint code and then by 
ECC as shown in Figure 3. Unconstrained parts of the RLL 
coder output stream are filled in with parity check bits of 
ECC code and that action breaks the unconstrained stream. 
Two families of RLL constraints were investigated, 
RLL(d,∞) and RLL(d,2d+2) and the results presented in the 
work of Louidor (2010).  

Finally, the encoder design procedure begins with a 
constrained channel description given by a state transition 
matrix B. Matrix B is associated with FSM model as shown 
in Figure 5, and it is a square 5-by-5 matrix, in this case, as 
given below. 

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 1

B

 
 
 
 
 
 
  

 (17) 

In this matrix representation, matrix entry bij = 1 indicates 
that there is a transition between two associated FSM states: 
from Si to Sj. Those transitions are the paths of length one, 
i.e. one symbol element long. Since two data bits are 
represented with five signal elements, according to the 
chosen coding rate, R = 2/5, another transition matrix is 
needed whose entries will indicate existence of the paths 
through the FSM of the length 5.  

Following that, new matrix B5 is derived from B, or 
could be generated directly from the FSM channel model. 
Matrix B5 contains the number of paths of the length 5 from 
the state Si to the state Sj, where i, j Є {0, 1, 2, 3, 4}. As 
already known, from the work of Blahut (1990), there is a 
useful property of the transition matrix B which states that 

Bn = Bn (18) 

This means that, in order to generate this matrix, the paths 
of length 5 could be traced through the FSM model of the 
channel, or transition matrix B of single paths could be 
multiplied to the power of n, or five, in this case. 
Accordingly, matrix B5 is given as: 

5
5

1 0 0 0 1

1 1 0 0 1

1 1 1 0 1

1 1 1 1 1

1 1 1 1 2

B B

 
 
 
  
 
 
  

 (19) 

It could be observed, from the expression for matrix B5 that 
there are two paths from the state S4 to itself, while all other 
transitions are single, or do not exist. This will be important 
later for encoder design. The basic coding prerequisite, as 
given in equation (6) can now be expressed in matrix form as: 

2mv ≤ Bnv (20) 

Following this, the next step in the procedure is to find an 
integer-valued vector v of length 5 that satisfies matrix 
inequality equation (20). This vector is then used to define 
the number of new states for each channel state, in the state 

splitting process to be performed next. The splitting process 
is necessary for definition of a more specific encoder model 
that should be derived from the initial FSM channel model 
as mentioned before. 

4 Transition from FSM to encoder 

In this particular case, for (4,∞) modelling, components of 
the vector v, are given as: 

v(p) (p = 0 to 4) (21) 

Encoder matrix E is a square matrix of the order q where:  

q = ∑v(p) for p = 0 to 4 (22) 

By solving matrix inequality equation (20) for the FSM 
model from Figure 5 with m = 2, n = 5, the vector v could be 
found. A solution is:  

2

3

4

5

7

v

 
 
 
 
 
 
  

 (23) 

This solution can easily be verified by direct substitution.  
Vector component v(i) defines the number of Encoder 

states, denoted by subscripts and superscripts as well, i.e. 
Si
j. They are generated by splitting the corresponding FSM 

state Si. According to that, the association between channel 
states and encoder states that can be set up is as following:  

 FSM State S0 should be split into v(0) = 2 encoder 
states: S0

1 and S0
2 

 Another FSM state S1 should be split into v(1) = 3 
states, and so on. 

All other states should be split accordingly generating a 
total of 21 new, encoder states. Generally speaking each 
FSM state Si will be split into a set with the number of v(i) 
states, Si

l where l = 1 to v(i). In summary, starting from the 
set of FSM states,  

 0 1 2 3 4, , , ,FSMS S S S S S  (24) 

the set of encoders states can be generated as following 




0 0 1 1 1

1 2 1 2 3 1 2 3 4 1 2 3 4 5
2 2 2 2 3 3 3 3 3

1 2 3 4 5 6 7
4 4 4 4 4 4 4

, , , , , , , , , , , , , ,

, , , , , ,

EncoderS S S S S S S S S S S S S S S

S S S S S S S


 (25) 

Since two data bits are replaced with five signal elements, 
four pathways should leave each encoder state. 
Furthermore, it is important that input order of each state 
should be at least equal to a minimum of one. Hence, each 
encoder state has at least one input path and a minimum of 
four output paths, as per equation (5). 

The notation 1,2, , ( )v i
iS   refers to the set of substates 

originating from the FSM state Si. Therefore, that state 
should be split into v(i) new states. 
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Another way to explain splitting process would be as 
following: if B5 entry bij = 1 then all Si

l to Sj
p state 

transitions exist, where i,j = 0, …, (n–1) while l = 1, …, v(i) 
and p = 1, …, v(j). In that case, the appropriate element of 
the encoder matrix is 1. In all other cases elements of 
encoder matrix are equal to zero. 

There might be more transitions than required in the 
extended matrix, due to the enlarged number of states and 
hence transitions. To manage this, the next stage in encoder 
design is to delete unnecessary transitions. This can be 
completed by changing some entries from 1 to 0 and so 
define the more specific encoder state transition matrix E. 

The procedure could start by splitting the first state S0 
into new encoder states. According to the value of the first 
element in vector v, which is 2, there should be two new 
states which are shown in the set SEncoder above. Transitions 
should be allocated to each new state in the new state 
transition matrix, i.e. now encoder matrix. In order to do 
that, it is needed to look at the successors of the splitting 
state, in the B5 transition matrix. They are S0 and S4. They 
both have substates denoted by superscripts as following: 

1,2 1,2 1,2,3,4,,5,6,7
0 0 4,S S S  (26) 

The next step is to partition the set of successor states into 
the subsets with minimum four elements, presented by the 
superscripts. This action will generate the following subsets: 

     1,2 1,2,3,4,5,6,7 1,2 1,2 3,4,5,6,7
0 4 0 4 4, ,S S S S U S  (27) 

Finally, each of the new states (now becoming encoder 
states) has to be associated with a subset of new successor 
states as destinations for the transitions. It is shown as: 

 1 1,2 1,2
0 0 4,S S S  (28) 

 2 3,4,5,6,7
0 4S S  (29) 

The last subset, given in equation (29), has more than four 
superscripts, i.e. states, corresponding to transitions. One 
transition has to be discarded, which could be any of those 
five transitions. Algorithm has to be performed until all states 

are split.  
The full encoder state transition matrix is illustrated  

in Figure 6. In this matrix expression, if the transition from 
two encoder states exists, corresponding matrix entry has 
value of 1. Symbol x appears if the corresponding transition 
exists, as the result of the splitting process, but it has been 
discarded since there were more than four transitions in the 
row, essentially from the associated encoder state. 

As previously discussed, codewords correspond to the 
paths of length 5, through the FSM channel model. The set 
of available codewords, C, is given below and it consists of 
only six elements. 

C = {00001, 00010, 00100, 01000, 10000, 00000} (30) 

The set of unconstrained input data bits, D, is given as:  

D = {00, 01, 10, 11}  (31) 

New code design can be finalised by specifying another 
state transition matrix, this time with codewords and also 
with association of codewords to the data. This matrix is 
shown in Figure 7.  

One realisation of the new code could be achieved by 
simply associating data words, as presented in the set D, 
sequentially to the codewords in each row of the transition 
matrix. This association can also be seen in Table 4, which 
can be used as an encoder look up table, or as a truth table 
to define logic functions of the encoder. There are ten logic 
functions of seven input variables. For example codeword 
functions are given as following:  

1 4 3 2 1 0 1 0( , , , , , , ) (0 4)iC f x x x x x d d i    (32) 

Figure 6 State transition matrix for new RLL code generated by splitting FSM states 
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Figure 7  State transition matrix for new RLL code with the codewords assigned  

 

Table 4 fully corresponds to Figure 7. 

Table 4 A segment from the encoder truth table 

Input Output 

Initial  
State 

State in binary 
x4x3x2x1x0 

Data 
d1 d0 

Codeword 
C4C3C2C1C0 

New State 
in binary 

New 
State

S0
1 00000 00 00001 00000 S0

1 

S0
1 00000 01 00001 00001 S0

2 

S0
1 00000 10 00000 01110 S4

1 

S0
1 00000 11 00000 01111 S4

2 

S0
2 00001 00 00000 10000 S0

1 

S0
2 00001 01 00000 10001 S0

2 

…      

S4
7 10100 10 00000 10011 S4

6 

S4
7 10100 11 00000 10100 S4

7 

This encoder truth table has 21*4 entries. Since there are 
seven input bits, other 

128 – 84 = 44 

entries are illegal. This leads into some error detection 
capabilities. Furthermore, it might be good to investigate if 
some of the particular associations of data bits to codewords 
can contribute to the better error propagation capabilities of 
this RLL d = 4 coding, as it was already shown for RLL 
d = 5 codes (Simic and Petrovic, 1991). The encoder block 
diagram is illustrated in Figure 8.  

Figure 8 New RLL(4,∞) code table look-up encoder 

 

As mentioned before, RLL (d,k) codes belong to ACH class 
of coding techniques. Importantly, one of the advantages of 
ACH codes is that errors in the channel can cause only a 
finite number of errors at the decoder output. 

5 Decoder design 

It was demonstrated how an expanded set of FSM states 
becomes internal states set for an RLL encoder. The same new 
states are important for the decoding process and refer to the 
decoder as well. Looking from the original FSM channel 
model, each subset of states sharing the same subscript 
corresponds to the original state, but decoder should also 
reconstruct the sequence of internal states, of the encoder, for 
the purpose of data decoding. The main problem is that the 
same codewords could represent different data. Therefore, 
information about the future encoder states is vital for the 
decoding process. Few scenarios were analysed and are 
presented here. 

For example, codeword received at the discrete time 
instance t = n was Cn = 00001. It is shown in the extract of the 
decoder table (Table 5). The codeword will cause channel 
FSM model transition to state S0. However, this information 
is insufficient to make the decision regarding the data bit 
associated with the codeword. There are two possible 
substates that encoder could have ended up when generating 
codeword 00001; they are S0

1 and S0
2. The first one would 

correspond to data bits dn = 00 and the second one to dn = 01. 
This can be seen form Table 4, as shown in the first two rows.  

Table 5 A segment from the decoder table 

Cn Cn+1 Cn+2 Cn+3 dn dn+1 

00001 00001   00  

00001 00000 00001  00 10 

  00010 00001 00 10 

  00100    

  01000    

  10000    

  00000    
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In order to assign superscript, decoder needs to look at the 
following codeword. There are just two possible, legal 
codewords that could appear now: 00001 and 00000. This 
can be seen from the encoder state transition matrix given in 
Figure 7. If the following codeword, Cn+1 is again 00001, 
which would point to superscript 1, this would further 
indicate that the encoder ended up in the S0

1 state and that it 
was caused by the data word transmitted being 00.  

The second possible codeword 00000 could not  
support decoder to make a decision about the superscript,  
at this stage, since it could be generated from any of the  
two S0 states as it can be seen from the encoder table  
(Table 4). The decoder will need to continue analysing more 
incoming codewords using the same algorithm to obtain  
the result. 

After receiving the sequence of 00000 the channel FSM 
model will go to the state S4. If it was sent from S0

1 substate 
the new substates would be either S4

1 or S4
2. If it originated 

for the different substate, S0
2, the subsequent encoder states 

could be any of the following: S4
3, S4

4, S4
5, S4

6. The decoder 
proceeds with the algorithm again.  

The only two possible codewords from the S4
1 are 00001 

and 00010. The first would end the ambiguity since it is 
only possible from the first of the considered states now. 
The second codeword appearance is possible from the two 
S4 states, S4

1 and S4
2. This means that decoder has to 

proceed with the algorithm once more. 
Other allowed codewords, from the rest of the subset of 

S4 states considered here, are given in Table 5. This was a 
short presentation of the decoding process based on the look 
ahead detection. 

Fine tuning of the association between two sets, the set 
of codewords, C, and the set of data, D, as given above, 
could shorten and simplify the decoding process. Code 
optimisation should be subjected to further research which 
may, also, lead to improved error propagation limitations 
(Simic and Petrovic, 1991).  

According to the encoder truth table, (Table 4), there are 
84 legal entries in the table, while the number of total 
entries is 128. There are six combinations that could appear 
for a single codeword; for two codewords it will make  
36 and for the three codewords there are 63 combinations 
(216 combinations). Subsequently, it is expected that the 
decoder which uses feed-forward shift register, with the 
current codeword and the following 3, at the average, would 
be able to uniquely decode channel sequence received. This 
could be the subject of further research and fine 
modifications in the association of data to the state 
transitions and codewords assignment. An error in the 
received codestream could effect at most four data 
combinations, i.e. eight data bits. This is concluded according 
to the overall characteristic of the ACH codes. Generally, it 
states that the channel errors can cause just a finite number 
of errors in the decoder output. The decoder block diagram 
is shown in Figure 9.  

 
 

Figure 9 Look ahead decoder block diagram for new RLL code 
(see online version for colours) 

DataDecoder Logic 
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6 Conclusion 

A short review of constrained coding is presented. New coding 
ideas were investigating, leading to new efficient coding 
techniques based on the channel (d,k) = (4, ∞) modelling with 
the coding rate R = 2/5, which is close to the maximum channel 
information capacity. Current findings suggest that the 
proposed code, or codes, achieve the best possible use of the 
given channel capacity. However, further comprehensive 
performance investigation is needed to validate possible 
applications. Codes can be used for data recording and 
transmission on various physical channels. Since the majority 
of communication systems already have well-established 
standards, the new and emerging technologies, like near-field 
optical recording for the new generations of Blue-ray Discs, 
could easily benefit from this research.  
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