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Abstract— Sampling based algorithms provide efficient 
methods of solving robot motion planning problem. The 
advantage of these approaches is the ease of their 
implementation and their computational efficiency. These 
algorithms are probabilistically complete i.e. they will find a 
solution if one exists, given a suitable run time. The drawback 
of sampling based planners is that there is no guarantee of the 
quality of their solutions. In fact, it was proven that their 
probability of reaching an optimal solution approaches zero. A 
breakthrough in sampling planning was the proposal of 
optimal based sampling planners. Current optimal planners 
are characterized with asymptotic optimality i.e. they reach an 
optimal solutions as time approaches infinity. Motivated by the 
slow convergence of optimal planners, post-processing and 
heuristic approach have been suggested. Due to the nature of 
the sampling based planners, their implementation requires 
tuning and selection of a large number of parameters that are 
often overlooked. This paper presents the performance study 
of an optimal planner under different parameters and 
heuristics. We also propose a modification in the algorithm to 
improve the convergence rate towards an optimal solution. 

Keywords-RRT, PRM, Sampling-Based, Optimal Planners, 
Motion, Planning 

I. INTRODUCTION 
Motion Planning is considered to be one of the basic 
problems in robotics. Planning, together with perception, 
localization and motion execution, are the fundamentals of 
autonomous robotics. In order to generate feasible plans for 
the robot to traverse, an accurate probability of the robot 
location in the environment and that environment topology 
must be developed.  This is a daunting mathematical task 
even for the simplest of systems in a low dimension space.  
The complexity of the motion planning problem, referred to 
as the piano movers problem, has been thoroughly analysed 
[1]. Sampling based motion planners have been used in 
various applications such as digital animation, virtual 
reality, robot planning and computational biology [2-4]. In 
this paper we will focus on their use for robotics. 

Several approaches have been presented to overcome 
the complexity of the problem. Classical methods are 
generally divided into Roadmaps, Decompositions and 
Potential Fields [5, 6]. Roadmap methods attempt to capture 
connectivity of the given environment. They then proceed to 
look for a solution using a graph search algorithm such a 
Dijkstra Algorithm [7] or A* algorithm [8]. Voronoi [9] 

Diagrams and Visibility Graphs [10] are the most 
commonly used roadmap methods, however others have 
also been suggested [11]. Cell decompositions have been 
proposed for robot path planning purposes. They proceed to 
decompose the environment into smaller cells, to capture the 
free space, and connect the robot through the free cells to its 
desired goal [12]. All mentioned classical methods perform 
poorly in cluttered environments and larger dimensions. 

The limitations of classical approaches led to the 
development of heuristic based methods. For example, when 
Potential Field method is used artificial forces are assumed 
to be applied on the robot [13]. Those forces are a result of 
artificial attractive potential field acting towards the goal 
and repulsive field  that is pushing object away from 
obstacles. Initially developed for articulated robots they 
have been since extended to mobile robots [14]. The main 
limitation for using potential fields is their tendency to get 
stuck in local minima in situations where attractive and 
repulsive forces are equivalent [15, 16].  

Inspired by the use of random computational methods 
in solving complex mathematical problems [17, 18], random 
planning was introduced to the field robotics. The first use 
of random sampling methods in robotics was to extend 
potential field planners and prevent the robot from 
stagnating in local minima [19]. In the case of stagnation in 
local minima the robot would perform a random motion in 
order to escape. The success of random walks motivated 
development of an entire new field in robotics which is 
sampling based motion planning. 

Probabilistic roadmap method (PRM) was proposed 
for both articulated and mobile car-like robots [20-22]. This 
method relies on the random sampling of the configuration 
space. All free spaces are then attempted to be connected 
together using a local planner. This phase is known as the 
learning phase, where most of the computational time is 
invested. The next is the query phase where start and goal 
configurations are defined. The planner attempt to connect 
both configurations to the existing roadmap and employs a 
graph search to find the shortest path between them. Thus 
this method is often used for multiple-query problems. 

Rapidly-Exploring Random Trees (RRT) were 
proposed later, as a single-query fast exploring method [23]. 
This method starts exploring from the start configuration, 
where a tree of connected configuration is incrementally 



grown. Samples are only connected if the path between 
them is collision free and if they are in the free 
configuration space. RRT have been extended later on for 
kinodynamic planning as well [24]. 

It is shown that both PRM and RRT are 
probabilistically complete [24, 25]. This implies that the 
planner will successfully return a solution provided one 
exists. However this probabilistic completeness is 
guaranteed as time approaches infinity. It is a weaker notion 
of completeness.  As it turns out, sampling based planning 
methods tend to generate solutions quickly however the 
quality of the solutions is extremely low. They provide no 
guarantees on the quality of the solutions that they generate. 
The performance of RRT and PRM have been thoroughly 
analysed [26, 27]. Recently, it was proven that the 
probability of RRT generating an optimal solution as time 
approaches infinity is zero [28, 29]. 

Driven by the gap in the quality of the solutions, a 
breakthrough optimal sampling based planner was put 
forward by Kobilarov [30]. Referred to as RRT* by its 
creators, this planner is characterized by asymptotic 
optimality i.e. it finds an optimal solutions as time 
approaches infinity. The drawback of RRT* is its slow 
convergence rate towards optimal solutions (often requiring 
infinite time). This research paper presents current methods 
employed to improve solutions for standard and optimal 
planners. We analyse the different parameters and attempt to 
introduce some of our own so that we can obtain optimal 
solutions at a higher rate. 

This paper is organized as follows; In the Section II the 
main implementation of a standard RRT and its parameters 
are introduced. The RRT* algorithm is presented and the 
main differences between it and other existing algorithms 
are highlighted. Section III presents current methods, 
algorithms and heuristic used to improve the quality of 
solutions generated by sampling planners. Section IV 
presents the proposed modifications and heuristics to 
improve the convergence rate of the solution; we present 
experiments and discuss results. Finally Section V 
concludes the paper and presents future research directions. 
As far as the authors know there are no studies in the 
reviewed literature that attempt to experimentally adjust the 
parameters for optimal sampling based planning 
performance. 

 
II. PRIMITIVES, EXECUTION AND PARAMETERS  

This section provides a description of the common motion 
planning terminologies that are related to our discussion. 
Moreover, both RRT and RRT* algorithms are presented 
and their parameters are discussed. For further details refer 
to [30] and [27]. 

A. Motion Planning Primitives 

A motion planning algorithm performs a search in the 
configuration space X. It is the assembly of all conceivable 
arrangements of the system. The dimensions of this space 

are equivalent to the degrees of freedom of the system being 
studied. A path is a combination or sequence of 
configurations in the free configuration space. The free 
configuration, free space Xfree, is a component of X that does 
not lie in the obstacle configuration Xobs. This means that an 
algorithm does not require an explicit representation of the 
environment. 

The goal of a motion-planning algorithm is to find a 
collision free path from a start configuration xstart to a goal 
configuration xgoal.  A path is defined as collision free if all 
its configurations lie in Xfree, a task that is usually delegated 
to a collision checker. Additionally the paths connecting 
those configurations must be collision free, a task delegated 
to the local planner.  

B. RRT Algorithm 

Perhaps the most commonly used single query randomized 
planner is the RRT algorithm. The algorithm proceeds by 
incrementally growing a tree from the start configuration. It 
is characterized by rapid exploration of the free 
configuration space. The growth of the RRT is given below 
in Fig. 1 and an example of an RRT is given in Fig. 2 The 
poor quality of the generated path is apparent and the need 
for finding methods to improve it obvious. Additionally, by 
increasing the runtime of the algorithm it is possible to 
improve the solution however the probability of it 
generating an optimal solution is zero [30]. 

 
Figure 1. RRT growing algorithm 
 

 
Figure 2. Example of RRT 

C. RRT* Algorithm 

RRT* was proposed as an algorithm to overcome the poor 
solutions presented by sampling based planners. This 
algorithm provides optimal solutions based on a 



predetermined cost function. It grows trees incrementally 
using the same method implemented by RRT. The major 
difference between algorithms is the rewire procedure that 
RRT* employs [30].  

Rewiring starts by searching in the neighbourhood of 
the newly added configuration. The size of the 
neighbourhood is determined by a ball whose radius is a 
function of the current number of nodes in the tree. A list of 
near configurations Xnear is acquired. The node that provides 
a shorter route towards the start of the tree is chosen as the 
parent for the current node. Another search is conducted to 
check if the current node would provide a faster route to the 
starting point, if so it is selected at that node’s parent. This 
rewiring procedure ensures that the algorithm is constantly 
attempting to minimize the path quality. Given enough 
runtime the algorithm will finally reach an optimum 
solution.  

A solution generated by the RRT* algorithm after 
6000 iteration is given in Fig. 3. It can be noticed that the 
length of the generated path is far shorter than the one 
generated by the RRT* algorithm. However the number of 
nodes explored is rather large and so is the run time of the 
algorithm. The effect of the rewiring procedure on the tree 
structure is apparent. However, unnecessary exploration and 
rewiring has been wasted in unpromising areas. These areas 
will not improve the quality of the solution and thus 
growing and rewiring the tree is considered a waste of 
resources.    

 
Figure 3. RRT* algorithm after 6,000 iteration 
 

III. RELEVANT APPROACHES 
There are several heuristics that are employed to speed up 
the search, decrease the computation and guide the growth 
of the tree. As far as the authors know, a study of this kind 
for optimal plannig have not been The proposed methods 
can be divided into guiding algorithms and post processing 
algorithms. Guiding algorithms are those that influence the 
sampling of the configurations and their selection. Post 
processing algorithms are those that optimize the solution 
after the search process is complete in order to generate 
solution of higher quality. The main algorithms for both 
approaches are discussed here in addition to proposed 
heuristics to improve the convergence rate of RRT* planner. 

A. Guiding the search 

It can be noticed that a large portion of the algorithm 
runtime is spent on sampling areas that are not promising. 
Sampling in those areas will not lead to finding a solution or 
increasing the quality of an existing solution. Sampling 
around obstacles [20], medial-axis [31] or a combination of 
both have been proposed [32] as alternatives to random 
sampling.  

Selecting appropriate metrics has been the focus of 
many researchers [33-35]. In [36], it was found that a 
weighed Euclidian metric is yielded better solutions. 
However, LaValle [27] argues that choosing an appropriate 
distance metric proves to be a task that is as complex as the 
original piano mover’s problem [1].  

A bidirectional search method is proposed where two 
RRTs are grown from the start and goal configurations and 
once the two trees are connected the search is over [37]. 
Light goal biasing has been proposed where the planner 
attempts to connect to the goal position every nth iteration, 
where n is an integer preferably larger than 100 [24]. 

It has been argued that a significant portion of the 
planning time is wasted on collision checking and thus 
delaying the collision checking was presented in [38, 39]. A 
naive method is checking every segment of the path for 
collision. Different collision checking algorithms were 
proposed to speed up the process [40, 41].  

Urmson and Simmons [42] suggested a k-near 
algorithm. Once a node is sampled its parent is chosen from 
the nearest k configurations, where k is a positive integer. 
The parent is selected as the node that has the shortest path 
towards the root of the tree. An anytime RRT planner was 
presented which expanded on the k-near concepts [43]. It 
would generate fast suboptimal solutions and proceed to 
improve the solutions incrementally. The planner would 
only sample promising nodes. A node would be deemed 
promising if its heuristic length from start to finish would be 
lower that a predetermined value. This value is based on the 
current length of the tree. Optimal anytime RRT* was also 
proposed [29]. 

Some of the presented heuristics were proposed to 
improve the convergence rate of RRT* [44]. It was 
suggested to perform biasing the sampling towards existing 
nodes in the path, to improve the path quality, as opposed to 
expanding into unnecessary regions. A similar node 
selection algorithm given in [43] was used to select only 
promising nodes. The effectiveness of bidirectional search 
was highlighted in [24, 37] and so bidirectional RRT* was 
also proposed. All of these heuristics were combined and 
shown to improve the performance of the RRT* 
convergence rate towards an optimal solution [44].  

B. Post Processing 

Unlike methods which attempt to guide the search and 
improve the solution while the growth of the tree continiues, 
post processing methods, as their name suggest, improve the 
solution after the RRT growth is complete. A common 



method is tree pruning, in which the the number of 
configurations in the tree is reduced by removing redundant 
nodes. This  is achieved by attempting to connect sucusseive 
nodes together until a node cannot be connected. An 
alternative method was suggested in which the path is 
divided into random segments which are then tried to be 
connected [45]. In the same paper, a method for moving the 
path towards the medial axis and removing redudand 
branches is also provided. RRT algorithms are run multiple 
times and the resulting trees are connected to create what is 
referred to as H-graph [46]. This method relies on the fact 
that suboptimal solutions will have optimal regions in them. 
By connecting all solutions it is shown that a graph search is 
capable of finding better solutions. 

A post processing method was proposed to improve 
RRT* convergence rate based on a pruning algorithm [47]. 
If two configurations cannot be connected the algorithm 
proceeds to sample around them. It is assumed that these 
configurations are close to objects and thus sampling around 
them will improve the results. The pruning algorithm 
removes redundant configurations from the path towards the 
goal. 

IV. EXPERIMENTS AND RESULTS 
This section is divided into two parts. In the first, the effect 
of the different parameters of the algorithm with respect to 
the quality of the solutions is given. Additionally, an 
extension to the rewiring procedure is proposed to improve 
the quality of the solution. Heuristics from literature are 
combined and their effects on the resluting paths are 
discussed. For the sake of brevity, the convergence rate of 
RRT* without any heurstics will not be presented as our 
results agree with those already discussed in [44, 47]. It 
must be noted that multiple experiments have been 
conducted. For brevity only one of each is presented. Both  
were run in the same environment as shown in Fig. 2. and 
Fig. 3. Experiments have been run with different step sizes 
(10, 5, 5-1.414), different goal biasing (0%, 1%, 10%), node 
selection heuristic to improve the path by 1% and 5% and 
with path rewiring. 

A. Parameter Tuning 

In Section IV, different heuristics and parameters used to 
improve the performance of general sampling based 
planners were introduced. In this section a number of these 
parameters are studied. Mainly, goal-biasing, incremental 
step size and node selection heuristics and values are 
considered. It is attempted to find the combination of 
parameters that improve the performance of RRT*. In this 
context performance refers to the quality of the solution 
with respect to a metric and the optimization convergence 
rate. Often these heuristic values are overlooked in the 
theoretical handling of sampling based algorithms but they 
are essential for their implementation [26].  

Goal biasing is a heuristic in which the tree is guided 
towards the goal position. This percentage of iterations in 
which the goal connection is attempted must be maintained 

relativly low to maintain the randomness in planning. As 
expected biasing enables the planner to find a solution 
faster, in our case almost 1000 iterations quicker just by 1% 
biasing. On the other hand, when biasing is continued after 
the solution has been found,  it tends to hinder path 
optimization. In the absense of biasing a 2.87% optimization 
rate over a 10,000 iterations can be reported, as opposed to 
3.15% with 1% goal biasing.  

The algorithm was run with 10% biasing to rapidly 
find a initial solution and then biasing was stopped to allow 
for path optimization. The results of the experiments are 
shown in Fig. 4. Guiding the tree towards the goal initial 
generated a quick first solution with lower costs, however 
the convergence rate is still low and reaching  an optimal 
solution would possibly require an infinite number of 
iterations.  

 
Figure 4. Effect of goal biasing on path convergence towards optimality  

 
The distance that was set for the steering function is 5, 

in a 2D environment whose dimensions are 100 x 100. It is 
attempted to vary the step size and observe its effect on 
convergence rate and path quality. Large distances between 
nodes are expected to produce a quick first solution with 
low quality. On the other hand, small distances between 
nodes can be redundant as they would have no effect on the 
path quality and would only increase the computational load 
of the algorithm. As the result of RRT* slow convergence 
rate, it is attempted to generate initial paths with high 
quality. Fig. 5 shows multiple runs of RRT* with different 
step sizes. As step size increases, so do the initial solutions 
obtained by the planner. To overcome sampling redundant 
nodes, planner was run with a minimum distance of √2 in 
addition to a maximum distance of 5. This approach has 
significantly improved the quality of the solutions. 

 
Figure 5. Effect of step size on solution convergence 

 
In all the previous experiments nodes are only rejected 

if they, or their path, do not lie in the free configuration 



space. As a result, the number of nodes explored by the 
algorithm after 10,000 iterations is between 7,000 and 
8,000. By analysing  solutions, it can be noticed that, a large 
portion of these nodes are unpromising, as they will not 
improve the quality of the current path. See Fig. 3 for 
illusration. Rejecting these unpromising nodes will decrease 
the computational load on the planner and will allow more 
time for path optimization. This heuristic has no direct 
effect on the convergence rate of the solution. We employ 
the heuristic introduced in  [43] for RRT planners. The 
lower bound cost of any node from start to goal must be less 
than a minimum cost, in order to consider it. Only 1,300 
nodes have been explored after 10,000 iterations. The 
improvement from the current solution ε is often a 
percentage between 1%-5%. The total number of nodes 
sampled using both values is shown in Table 1. 

 
TABLE 1. AVERAGE NUMBER OF NODES EXPLORED AFTER 10,000 ITERATIONS 

Number of Sampled Nodes After 10,000 Iterations 
RRT* ε = 1% ε = 5% 
7731 4718 4066 

B. Path Rewiring 

The slow convergence rate and the large time spent in 
exploring, rather than optimizing, are its main drawbacks of 
RRT*. We proposed an addition to the RRT* rewiring 
algorithm. Once the original rewiring algorithm is complete, 
we greedly attempt to rewire the current path. We find the k- 
nodes, in the current path, that are nearest to the recently 
added node. If the path through the current configuration is 
shorter we rewire the entire path thorugh the current 
configuration. This greedy heuristic is also coupled with the 
node selection heuristic employed in [43, 44].  

The advantage of this approach is that it is constantly 
attempting to improve the current path. When compared to 
an RRT* algorithm with the same step size, 5-1.414,  and 
goal biasing, 10%, using this heurstic improves the average 
solution obtained after 10,000 iterations and the overall 
convergence rate. See Table 2 and Fig. 6 for the results after 
10,000 runs of RRT*, with and without path rewiring. 

 
TABLE 2. RESULTS OF USING PATH REWIRING PROCEDURE AFTER 10,000 RUNS 

Planner Average Length Convergence 
RRT* 152.84 1.31% 
RRT* - path rewire 149.25 2.74% 

 

 
Figure 6. Effect of path rewiring on convergence rate and path length 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented the main heuristics used in 
sampling based planning algorithms. We applied those 
heuristics to RRT* optimal sampling based planners. 
Additionally, a heuristic to improve the convergence rate of 
the planner has been proposed. The findings of this paper 
are as follows:  
 Biasing the search towards the goal generates high 

quality initial paths. 
 A large step size helps increase finding an initial 

solutions however the quality of that solution is low. 
 Adding a minimum step size eliminates the addition of 

redundant nodes. 
 Using a node selection/rejection heuristic reduces the 

number of explored nodes. However, a large improvent 
rate value could possibly hinder the optimization 
process. 

 Attempting to rewire the current path every iteration 
improves both the quality of the solution and the 
convergence rate of the planner. 

The presented methods must be evaluated in high 
dimensional configurations space and in kinodynamic 
planning scenarios. It is possible that findings of this 
research may not scale to larger dimensions,  but it has to be 
tested and investigated further. Another  possible area of 
inverstigation is the application of Fuzzy Logic Control 
(FLC) for the selection of the tuning of the planner 
parameters. We also plan to incorporate the robotic systems 
contraints, i.e. robot kinematics, in the path planning 
procedure. Further investigation is needed in the application 
of more efficient sampling methods, local planners,  
collision checker and their effects on the planner. 
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