32 research outputs found

    Ab initio many-body calculations of the 3H(d,n)4He and 3He(d,p)4He fusion

    Full text link
    We apply the ab initio no-core shell model/resonating group method approach to calculate the cross sections of the 3H(d,n)4He and 3He(d,p)4He fusion reactions. These are important reactions for the Big Bang nucleosynthesis and the future of energy generation on Earth. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed many-body calculations that predict the S-factor of both reactions. Virtual three-body breakup effects are obtained by including excited pseudostates of the deuteron in the calculation. Our results are in satisfactory agreement with experimental data and pave the way for microscopic investigations of polarization and electron screening effects, of the 3H(d,gamma)5He radiative capture and other reactions relevant to fusion research.Comment: 4 pages, 3 figure

    A new cross section measurement of reactions induced by 3He-particles on a carbon target

    Get PDF
    International audienceThe production of intense beams of light radioactive nuclei can be achieved at the SPIRAL2 facility using intense stable beams accelerated by the driver accelerator and impinging on light targets. The isotope 14O is identied to be of high interest for future experiments. The excitation function of the production reaction 12C(3He, n)14O was measured between 7 and 35 MeV. Results are compared with literature data. As an additional result, we report the rst cross-section measurement for the 12C(3He, +n)10C reaction. Based on this new result, the potential in-target 14O yield at SPIRAL2 was estimated: 2.4x1011 pps, for 1 mA of 3He at 35 MeV. This is a factor 140 higher than the in-target yield at SPIRAL1

    New astrophysical S factor for the (15)N(p,gamma)(16)O reaction via the asymptotic normalization coefficient (ANC) method

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/The (15)N(p,gamma)(16)O reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong J(pi) = 1(-) resonances at E(R) = 312 and 962 keV and direct capture to the ground state. Asymptotic normalization coefficients (ANCs) for the ground and seven excited states in (16)O were extracted from the comparison of experimental differential cross sections for the (15)N((3)He,d)(16)O reaction with distorted-wave Born approximation calculations. Using these ANCs and proton and alpha resonance widths determined from an R-matrix fit to the data from the (15)N(p,alpha)(12)C reaction, we carried out an R-matrix calculation to obtain the astrophysical factor for the (15)N(p,gamma)(16)O reaction. The results indicate that the direct capture contribution was previously overestimated. We find the astrophysical factor to be S(0) = 36.0 +/- 6.0 keV b, which is about a factor of 2 lower than the presently accepted value. We conclude that for every 2200 +/- 300 cycles of the main CN cycle one CN catalyst is lost due to this reaction

    Comparative Developmental Expression Profiling of Two C. elegans Isolates

    Get PDF
    Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism

    The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle

    Get PDF
    Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the β€œfurnace” that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430–435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels
    corecore