1,650 research outputs found
A Framework for Combining Defeasible Argumentation with Labeled Deduction
In the last years, there has been an increasing demand of a variety of
logical systems, prompted mostly by applications of logic in AI and other
related areas. Labeled Deductive Systems (LDS) were developed as a flexible
methodology to formalize such a kind of complex logical systems. Defeasible
argumentation has proven to be a successful approach to formalizing commonsense
reasoning, encompassing many other alternative formalisms for defeasible
reasoning. Argument-based frameworks share some common notions (such as the
concept of argument, defeater, etc.) along with a number of particular features
which make it difficult to compare them with each other from a logical
viewpoint. This paper introduces LDSar, a LDS for defeasible argumentation in
which many important issues concerning defeasible argumentation are captured
within a unified logical framework. We also discuss some logical properties and
extensions that emerge from the proposed framework.Comment: 15 pages, presented at CMSRA Workshop 2003. Buenos Aires, Argentin
Defeasible Logic Programming: An Argumentative Approach
The work reported here introduces Defeasible Logic Programming (DeLP), a
formalism that combines results of Logic Programming and Defeasible
Argumentation. DeLP provides the possibility of representing information in the
form of weak rules in a declarative manner, and a defeasible argumentation
inference mechanism for warranting the entailed conclusions.
In DeLP an argumentation formalism will be used for deciding between
contradictory goals. Queries will be supported by arguments that could be
defeated by other arguments. A query q will succeed when there is an argument A
for q that is warranted, ie, the argument A that supports q is found undefeated
by a warrant procedure that implements a dialectical analysis.
The defeasible argumentation basis of DeLP allows to build applications that
deal with incomplete and contradictory information in dynamic domains. Thus,
the resulting approach is suitable for representing agent's knowledge and for
providing an argumentation based reasoning mechanism to agents.Comment: 43 pages, to appear in the journal "Theory and Practice of Logic
Programming
Datalog± Ontology Consolidation
Knowledge bases in the form of ontologies are receiving increasing attention as they allow to clearly represent both the available knowledge, which includes the knowledge in itself and the constraints imposed to it by the domain or the users. In particular, Datalog ± ontologies are attractive because of their property of decidability and the possibility of dealing with the massive amounts of data in real world environments; however, as it is the case with many other ontological languages, their application in collaborative environments often lead to inconsistency related issues. In this paper we introduce the notion of incoherence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and show how under specific conditions incoherence leads to inconsistent Datalog ± ontologies. The main contribution of this work is a novel approach to restore both consistency and coherence in Datalog± ontologies. The proposed approach is based on kernel contraction and restoration is performed by the application of incision functions that select formulas to delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encountered in the ontologies, our operators produce incisions over non-minimal structures called clusters. We present a construction for consolidation operators, along with the properties expected to be satisfied by them. Finally, we establish the relation between the construction and the properties by means of a representation theorem. Although this proposal is presented for Datalog± ontologies consolidation, these operators can be applied to other types of ontological languages, such as Description Logics, making them apt to be used in collaborative environments like the Semantic Web.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin
MANCaLog: A Logic for Multi-Attribute Network Cascades (Technical Report)
The modeling of cascade processes in multi-agent systems in the form of
complex networks has in recent years become an important topic of study due to
its many applications: the adoption of commercial products, spread of disease,
the diffusion of an idea, etc. In this paper, we begin by identifying a
desiderata of seven properties that a framework for modeling such processes
should satisfy: the ability to represent attributes of both nodes and edges, an
explicit representation of time, the ability to represent non-Markovian
temporal relationships, representation of uncertain information, the ability to
represent competing cascades, allowance of non-monotonic diffusion, and
computational tractability. We then present the MANCaLog language, a formalism
based on logic programming that satisfies all these desiderata, and focus on
algorithms for finding minimal models (from which the outcome of cascades can
be obtained) as well as how this formalism can be applied in real world
scenarios. We are not aware of any other formalism in the literature that meets
all of the above requirements
- …
