416 research outputs found

    Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats

    Get PDF
    Low intensity electric fields have been suggested to affect the ongoing neuronal activity in vitro and in human studies. However, the physiological mechanism of how weak electrical fields affect and interact with intact brain activity is not well understood. We performed in vivo extracellular and intracellular recordings from the neocortex and hippocampus of anesthetized rats and extracellular recordings in behaving rats. Electric fields were generated by sinusoid patterns at slow frequency (0.8, 1.25 or 1.7 Hz) via electrodes placed on the surface of the skull or the dura. Transcranial electric stimulation (TES) reliably entrained neurons in widespread cortical areas, including the hippocampus. The percentage of TES phase-locked neurons increased with stimulus intensity and depended on the behavioral state of the animal. TES-induced voltage gradient, as low as 1 mV/mm at the recording sites, was sufficient to phase-bias neuronal spiking. Intracellular recordings showed that both spiking and subthreshold activity were under the combined influence of TES forced fields and network activity. We suggest that TES in chronic preparations may be used for experimental and therapeutic control of brain activity

    Influence of temperature and ultrasound on drying kinetics and antioxidant properties of red pepper

    Full text link
    This is an Author's Accepted Manuscript of J. A. Cárcel, D. Castillo, S. Simal & A. Mulet (2019) Influence of temperature and ultrasound on drying kinetics and antioxidant properties of red pepper, Drying Technology, 37:4, 486-493, DOI: 10.1080/07373937.2018.1473417 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/07373937.2018.1473417[EN] Red pepper samples (1 m/s) were dried at different temperatures (30, 50, 70 degrees C) without and with (20.5 kW/m(3); 21.7 kHz) ultrasound application. The antioxidant capacity (AC), the total phenolic content (TPC), and the ascorbic acid (AA) content of fresh and dried red pepper samples were used as indicators of the quality of the dried products. Ultrasound application significantly improved the kinetics in every case, influencing not only the effective diffusivity but also the mass transport coefficient thus implying a reduction in energy needs. Drying significantly reduced AC, TPC, and AA, this reduction being significantly smaller at 70 degrees C due to the shorter drying time. Compared with conventional drying, ultrasound application reduced the loss of antioxidant properties at 50 degrees C but produced greater degradation at 70 degrees C, which points toward an optimal drying temperature when using ultrasound.The authors acknowledge the financial support from Generalitat Valenciana [PROMETEOII/2014/005] and INIA [RTA2015-00060-C04-02 and RTA2015-00060-C04-03].Carcel, JA.; Castillo, D.; Simal, S.; Mulet Pons, A. (2019). Influence of temperature and ultrasound on drying kinetics and antioxidant properties of red pepper. Drying Technology. 37(4):486-493. https://doi.org/10.1080/07373937.2018.1473417S486493374Di Scala, K., & Crapiste, G. (2008). Drying kinetics and quality changes during drying of red pepper. LWT - Food Science and Technology, 41(5), 789-795. doi:10.1016/j.lwt.2007.06.007Doymaz, İ., & Pala, M. (2002). Hot-air drying characteristics of red pepper. Journal of Food Engineering, 55(4), 331-335. doi:10.1016/s0260-8774(02)00110-3Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14Kowalski, S. J., & Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering, 156, 1-9. doi:10.1016/j.jfoodeng.2015.01.023Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331. doi:10.1016/j.tifs.2010.04.003Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015Fan, K., Zhang, M., & Mujumdar, A. S. (2017). Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrasonics Sonochemistry, 39, 47-57. doi:10.1016/j.ultsonch.2017.04.001Riera, E., Vicente García-Pérez, J., Cárcel, J. A., Acosta, V. M., & Gallego-Juárez, J. A. (2011). Computational Study of Ultrasound-Assisted Drying of Food Materials. Innovative Food Processing Technologies: Advances in Multiphysics Simulation, 265-301. doi:10.1002/9780470959435.ch13Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. Journal of Agricultural and Food Chemistry, 48(8), 3396-3402. doi:10.1021/jf9913458Gao, X., Bj�rk, L., Trajkovski, V., & Uggla, M. (2000). Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. Journal of the Science of Food and Agriculture, 80(14), 2021-2027. doi:10.1002/1097-0010(200011)80:143.0.co;2-2Jagota, S. K., & Dani, H. M. (1982). A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry, 127(1), 178-182. doi:10.1016/0003-2697(82)90162-2García-Pérez, J. V., Rosselló, C., Cárcel, J. A., De la Fuente, S., & Mulet, A. (2006). Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. Defect and Diffusion Forum, 258-260, 563-574. doi:10.4028/www.scientific.net/ddf.258-260.563Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371Kim, S., Lee, K. W., Park, J., Lee, H. J., & Hwang, I. K. (2006). Effect of drying in antioxidant activity and changes of ascorbic acid and colour by different drying and storage in Korean red pepper (Capsicum annuum, L.). International Journal of Food Science and Technology, 41(s1), 90-95. doi:10.1111/j.1365-2621.2006.01349.xCarrillo Montes, J. P., Cruz y Victoria, M. T., Anaya Sosa, I., & Santiago Pineda, T. (2010). Quality assessment of dehydrated red bell pepper using tempering drying cycles. International Journal of Food Science & Technology, 45(6), 1270-1276. doi:10.1111/j.1365-2621.2010.02273.xMoreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi:10.1080/07373937.2016.1256890Wang, J., Fang, X.-M., Mujumdar, A. S., Qian, J.-Y., Zhang, Q., Yang, X.-H., … Xiao, H.-W. (2017). Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chemistry, 220, 145-152. doi:10.1016/j.foodchem.2016.09.200Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., Mulet, A., & García-Pérez, J. V. (2013). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 50(1), 189-196. doi:10.1016/j.foodres.2012.10.028López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of Air Temperature on Drying Kinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content, Non-enzymatic Browning and Firmness of Blueberries Variety O´Neil. Food and Bioprocess Technology, 3(5), 772-777. doi:10.1007/s11947-009-0306-8Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Vega-Gálvez, A., Lemus-Mondaca, R., Bilbao-Sáinz, C., Fito, P., & Andrés, A. (2008). Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). Journal of Food Engineering, 85(1), 42-50. doi:10.1016/j.jfoodeng.2007.06.03

    Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity

    Full text link
    "This is the peer reviewed version of the following article: Vallespir, Francisca, Óscar Rodríguez, Juan A Cárcel, Carmen Rosselló, and Susana Simal. 2019. Ultrasound Assisted Low-temperature Drying of Kiwifruit: Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity. Journal of the Science of Food and Agriculture 99 (6). Wiley: 2901 9. doi:10.1002/jsfa.9503, which has been published in final form at https://doi.org/10.1002/jsfa.9503. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Background: Low-temperature drying is considered to be a promising technique for food processing. It preserves thermolabile compounds and might be intensified by acoustic assistance. The effect of acoustic assistance (20.5 kW m(-3)) during low-temperature drying of kiwifruit (at 5, 10 and 15 degrees C, and 1 m s(-1)) on drying kinetics, bioactive compounds (such as ascorbic acid, vitamin E, and total polyphenols), and antioxidant activity was studied. Results: Drying time was shortened by 55-65% when using power ultrasound. A diffusion model was used to evaluate the drying kinetics. The effective diffusion coefficient increased by 154 +/- 30% and the external mass transfer coefficient increased by 158 +/- 66% when ultrasound was applied during drying, compared with drying without ultrasound application. With regard to bioactive compounds and antioxidant activity, although samples dried at 15 degrees C presented significantly higher (P < 0.05) losses (39-54% and 57-69%, respectively) than samples dried at 5 degrees C (14-43% and 23-50%, respectively) when ultrasound was not applied, the application of ultrasound during drying at 15 degrees C significantly reduced (P < 0.05) those losses in all quality parameters (15-47% and 47-58%, respectively). Conclusion: Overall, low-temperature drying of kiwifruit was enhanced by acoustic assistance preserving bioactive compounds and antioxidant activity, especially at 15 degrees C. (c) 2018 Society of Chemical IndustryThe authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA) and co-financed with ERDF funds (RTA2015-00060-C04-03 and RTA2015-00060-C04-02 projects) and the Spanish Government (MINECO) for the BES-2013-064131 fellowship.Vallespir, F.; Rodríguez, O.; Carcel, JA.; Rosselló, C.; Simal, S. (2019). Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity. Journal of the Science of Food and Agriculture. 99(6):2901-2909. https://doi.org/10.1002/jsfa.9503S29012909996Soquetta, M. B., Stefanello, F. S., Huerta, K. da M., Monteiro, S. S., da Rosa, C. S., & Terra, N. N. (2016). Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit ( Actinidia deliciosa ). Food Chemistry, 199, 471-478. doi:10.1016/j.foodchem.2015.12.022Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. doi:10.1016/j.foodchem.2008.08.025Fernández-Sestelo, A., de Saá, R. S., Pérez-Lamela, C., Torrado-Agrasar, A., Rúa, M. L., & Pastrana-Castro, L. (2013). Overall quality properties in pressurized kiwi purée: Microbial, physicochemical, nutritive and sensory tests during refrigerated storage. Innovative Food Science & Emerging Technologies, 20, 64-72. doi:10.1016/j.ifset.2013.06.009Santacatalina, J. V., Rodríguez, O., Simal, S., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003Vallespir, F., Cárcel, J. A., Marra, F., Eim, V. S., & Simal, S. (2017). Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food and Bioprocess Technology, 11(1), 72-83. doi:10.1007/s11947-017-1999-8Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Garcia-Perez, J. V., Carcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14García-Pérez, J. V., Carcel, J. A., Mulet, A., Riera, E., & Gallego-Juarez, J. A. (2015). Ultrasonic drying for food preservation. Power Ultrasonics, 875-910. doi:10.1016/b978-1-78242-028-6.00029-6Rodríguez, Ó., Eim, V. S., Simal, S., Femenia, A., & Rosselló, C. (2011). Validation of a Difussion Model Using Moisture Profiles Measured by Means of TD-NMR in Apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542-552. doi:10.1007/s11947-011-0711-7Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72(2), 147-156. doi:10.1016/j.jfoodeng.2004.11.031Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147. doi:10.1137/s1052623496303470Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500-1508. doi:10.1016/j.foodchem.2009.01.078Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of «Antioxidant Power»: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine:  CUPRAC Method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. doi:10.1021/jf048741xRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010Darıcı, S., & Şen, S. (2015). Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat and Mass Transfer, 51(8), 1167-1176. doi:10.1007/s00231-014-1487-xGarcía-Pérez, J. V., Rosselló, C., Cárcel, J. A., De la Fuente, S., & Mulet, A. (2006). Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. Diffusion in Solids and Liquids, 563-574. doi:10.4028/3-908451-36-1.563Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027Rodríguez, Ó., Eim, V., Rosselló, C., Femenia, A., Cárcel, J. A., & Simal, S. (2017). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture, 98(5), 1660-1673. doi:10.1002/jsfa.8673Sivakumaran, S., Huffman, L., Sivakumaran, S., & Drummond, L. (2018). The nutritional composition of Zespri® SunGold Kiwifruit and Zespri® Sweet Green Kiwifruit. Food Chemistry, 238, 195-202. doi:10.1016/j.foodchem.2016.08.118Pal, R. S., Kumar, V. A., Arora, S., Sharma, A. K., Kumar, V., & Agrawal, S. (2015). Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month. Brazilian Archives of Biology and Technology, 58(2), 262-271. doi:10.1590/s1516-8913201500371Ball, G. F. M. (2005). Vitamins In Foods. doi:10.1201/9781420026979Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2-3), 165-173. doi:10.1016/j.fbp.2008.12.001Izli, N., Izli, G., & Taskin, O. (2016). Drying kinetics, colour, total phenolic content and antioxidant capacity properties of kiwi dried by different methods. Journal of Food Measurement and Characterization, 11(1), 64-74. doi:10.1007/s11694-016-9372-6Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., Barrajón-Catalán, E., & García-Pérez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi:10.1080/07373937.2016.1256890Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850-11858. doi:10.1021/jf303047kLeontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y.-S., Katrich, E., … Gorinstein, S. (2016). Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chemistry, 196, 281-291. doi:10.1016/j.foodchem.2015.08.12

    Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion

    Full text link
    [EN] Drying may alter the microstructure of vegetables and influence the release of bioactive compounds during digestion. The effects of convective drying (at 60 degrees C and 2 m s(-1); CD) and freeze-drying (at -50 degrees C and 30 Pa; FD) on the microstructure (evaluated using scanning electron microscopy (SEM) and image analyses with ImageJ software) of beetroot and the kinetics of biocompound release (total polyphenol content (TPC) and antioxidant activity (AA)) during 180 min of in vitro gastric digestion have been studied. Raw beetroot was used as the control. Drying promoted the collapse of cell walls causing volume shrinkage that resulted in a greater cell number per area unit; meanwhile in vitro digestion caused cell structure disruption, which resulted in a lower cell number per area unit. Drying promoted decreases of TPC (42% in CD and 29% in FD) and AA (66% in CD and 63% in FD) of beetroot. However, release of TPC and AA from dried samples during digestion was 82% (CD) and 76 (FD) % higher than from the raw sample. The Weibull model allowed the satisfactory modelling of the TPC and AA release kinetics (mean relative error of simulation lower than 8.5%).The authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA), co-financed with the ERDF funds (RTA2015-00060-C04-03), and the Balearic Government for the research fellowship (FPI/1814/2015).Dalmau, ME.; Eim, V.; Rosselló, C.; Carcel, JA.; Simal, S. (2019). Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion. Food & Function. 10(6):3209-3223. https://doi.org/10.1039/c8fo02421aS32093223106Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., … Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46-55. doi:10.1016/j.jfca.2015.03.005Kamiloglu, S., Grootaert, C., Capanoglu, E., Ozkan, C., Smagghe, G., Raes, K., & Van Camp, J. (2016). Anti-inflammatory potential of black carrot (Daucus carotaL.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Molecular Nutrition & Food Research, 61(2), 1600455. doi:10.1002/mnfr.201600455K. Ruse , T.Rakcejeva , R.Galoburda and L.Dukalska , Anthocyanin content in Latvian cranberries dried in convective and microwave vacuum driers , in Research for Rural Development , 2011 , pp. 100–106Bezerra, C. V., Meller da Silva, L. H., Corrêa, D. F., & Rodrigues, A. M. C. (2015). A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85, 750-755. doi:10.1016/j.ijheatmasstransfer.2015.02.027García-Alvarado, M. A., Pacheco-Aguirre, F. M., & Ruiz-López, I. I. (2014). Analytical solution of simultaneous heat and mass transfer equations during food drying. Journal of Food Engineering, 142, 39-45. doi:10.1016/j.jfoodeng.2014.06.001Padma Ishwarya, S., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171-180. doi:10.1016/j.jfoodeng.2014.10.011J. C. Russ , Image analysis of food microstructure , in Computer Vision Technology in the Food and Beverage Industries , 2012 , pp. 233–252Zhang, Z., Wang, X., Li, Y., Wei, Q., Liu, C., Nie, M., … Jiang, N. (2017). Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes. Food & Function, 8(12), 4693-4702. doi:10.1039/c7fo01382ePaustenbach, D. J. (2000). THE PRACTICE OF EXPOSURE ASSESSMENT: A STATE-OF-THE-ART REVIEW. Journal of Toxicology and Environmental Health, Part B, 3(3), 179-291. doi:10.1080/10937400050045264Barba, F. J., Mariutti, L. R. B., Bragagnolo, N., Mercadante, A. Z., Barbosa-Cánovas, G. V., & Orlien, V. (2017). Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science & Technology, 67, 195-206. doi:10.1016/j.tifs.2017.07.006Zahir, M., Fogliano, V., & Capuano, E. (2018). Food matrix and processing modulatein vitroprotein digestibility in soybeans. Food & Function, 9(12), 6326-6336. doi:10.1039/c8fo01385cRodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters. Food Biophysics, 8(1), 50-59. doi:10.1007/s11483-013-9283-6Devaux, M. ., Robert, P., Melcion, J. ., & Le Deschault de Monredon, F. (1997). Particle size analysis of bulk powders using mathematical morphology. Powder Technology, 90(2), 141-147. doi:10.1016/s0032-5910(96)03217-2Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the Drying Process of Carrot (Daucus carotav. Nantes) on the Basis of Quality Criteria. Drying Technology, 31(8), 951-962. doi:10.1080/07373937.2012.707162González-Centeno, M. R., Comas-Serra, F., Femenia, A., Rosselló, C., & Simal, S. (2015). Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry, 22, 506-514. doi:10.1016/j.ultsonch.2014.05.027Moreira, D., Gullón, B., Gullón, P., Gomes, A., & Tavaria, F. (2016). Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food & Function, 7(7), 3273-3282. doi:10.1039/c6fo00553eBaş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845. doi:10.1016/j.jfoodeng.2005.11.024Carnachan, S. M., Bootten, T. J., Mishra, S., Monro, J. A., & Sims, I. M. (2012). Effects of simulated digestion in vitro on cell wall polysaccharides from kiwifruit (Actinidia spp.). Food Chemistry, 133(1), 132-139. doi:10.1016/j.foodchem.2011.12.084Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1), R6-R15. doi:10.1111/j.1750-3841.2010.01957.xVan Buggenhout, S., Alminger, M., Lemmens, L., Colle, I., Knockaert, G., Moelants, K., … Hendrickx, M. (2010). In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science & Technology, 21(12), 607-618. doi:10.1016/j.tifs.2010.09.010Jeffery, J., Holzenburg, A., & King, S. (2012). Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. Journal of the Science of Food and Agriculture, 92(13), 2594-2602. doi:10.1002/jsfa.5767An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292-1300. doi:10.1016/j.foodchem.2015.11.033Karunasena, H. C. P., Brown, R. J., Gu, Y. T., & Senadeera, W. (2015). Application of meshfree methods to numerically simulate microscale deformations of different plant food materials during drying. Journal of Food Engineering, 146, 209-226. doi:10.1016/j.jfoodeng.2014.09.011Rojas, M. L., & Augusto, P. E. D. (2018). Microstructure elements affect the mass transfer in foods: The case of convective drying and rehydration of pumpkin. LWT, 93, 102-108. doi:10.1016/j.lwt.2018.03.031Smith, B. G., James, B. J., & Ho, C. A. L. (2007). Microstructural Characteristics of Dried Carrot Pieces and Real Time Observations during Their Exposure to Moisture. International Journal of Food Engineering, 3(4). doi:10.2202/1556-3758.1242Lewicki, P. P., & Pawlak, G. (2003). Effect of Drying on Microstructure of Plant Tissue. Drying Technology, 21(4), 657-683. doi:10.1081/drt-120019057Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., … Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51-59. doi:10.1016/j.foodchem.2011.10.029Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. M. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253-261. doi:10.1016/j.jfoodeng.2011.05.020Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT, 88, 80-86. doi:10.1016/j.lwt.2017.08.032Van Buggenhout, S., Lille, M., Messagie, I., Loey, A. V., Autio, K., & Hendrickx, M. (2005). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5-6), 543-553. doi:10.1007/s00217-005-0135-6Bornhorst, G. M., Chang, L. Q., Rutherfurd, S. M., Moughan, P. J., & Singh, R. P. (2013). Gastric emptying rate and chyme characteristics for cooked brown and white rice mealsin vivo. Journal of the Science of Food and Agriculture, 93(12), 2900-2908. doi:10.1002/jsfa.6160Bornhorst, G. M., Roman, M. J., Dreschler, K. C., & Singh, R. P. (2013). Physical Property Changes in Raw and Roasted Almonds during Gastric Digestion In vivo and In vitro. Food Biophysics, 9(1), 39-48. doi:10.1007/s11483-013-9315-2Mennah-Govela, Y. A., & Bornhorst, G. M. (2016). Acid and moisture uptake in steamed and boiled sweet potatoes and associated structural changes during in vitro gastric digestion. Food Research International, 88, 247-255. doi:10.1016/j.foodres.2015.12.012Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and Betacyanins in Red Beetroot (Betavulgaris) Root:  Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342. doi:10.1021/jf000523qFerreira, D., Guyot, S., Marnet, N., Delgadillo, I., Renard, C. M. G. C., & Coimbra, M. A. (2002). Composition of Phenolic Compounds in a Portuguese Pear (Pyrus communisL. Var. S. Bartolomeu) and Changes after Sun-Drying. Journal of Agricultural and Food Chemistry, 50(16), 4537-4544. doi:10.1021/jf020251mAsami, D. K., Hong, Y.-J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241. doi:10.1021/jf020635cGonzález-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850-11858. doi:10.1021/jf303047kSawicki, T., & Wiczkowski, W. (2018). The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chemistry, 259, 292-303. doi:10.1016/j.foodchem.2018.03.143Raikos, V., McDonagh, A., Ranawana, V., & Duthie, G. (2016). Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Science and Human Wellness, 5(4), 191-198. doi:10.1016/j.fshw.2016.10.002Loncaric, A., Dugalic, K., Mihaljevic, I., Jakobek, L., & Pilizota, V. (2014). Effects of Sugar Addition on Total Polyphenol Content and Antioxidant Activity of Frozen and Freeze-Dried Apple Purée. Journal of Agricultural and Food Chemistry, 62(7), 1674-1682. doi:10.1021/jf405003uBouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. doi:10.1016/j.foodchem.2011.02.052Kamiloglu, S., Pasli, A. A., Ozcelik, B., Van Camp, J., & Capanoglu, E. (2015). Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 186, 74-82. doi:10.1016/j.foodchem.2014.12.046Chen, J., Sun, H., Wang, Y., Wang, S., Tao, X., & Sun, A. (2014). Stability of Apple Polyphenols as a Function of Temperature and pH. International Journal of Food Properties, 17(8), 1742-1749. doi:10.1080/10942912.2012.678531Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329-334. doi:10.1016/j.jff.2011.05.007Fazzari, M., Fukumoto, L., Mazza, G., Livrea, M. A., Tesoriere, L., & Marco, L. D. (2008). In Vitro Bioavailability of Phenolic Compounds from Five Cultivars of Frozen Sweet Cherries (Prunus aviumL.). Journal of Agricultural and Food Chemistry, 56(10), 3561-3568. doi:10.1021/jf073506aPérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In Vitro Gastrointestinal Digestion Study of Pomegranate Juice Phenolic Compounds, Anthocyanins, and Vitamin C. Journal of Agricultural and Food Chemistry, 50(8), 2308-2312. doi:10.1021/jf0113833Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33-43. doi:10.1016/j.jff.2015.01.020Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39(7), 791-800. doi:10.1016/j.foodres.2006.02.00

    A selective turn-on fluorescent chemosensor 1,1-diaminoazine for azinphos-methyl

    Get PDF
    Financiaciado para publicación en acceso aberto: Universidade de Vigo/CISUGDetection of organophosphorus pesticides (OPPs) is an important challenge in environmental chemistry, because their exposure to humans can cause severe health problems. In the current study, organic nanoparticles of (E)-(4-chlorophenyl)-1,1-diamino-2,3-diazabutadiene were developed using eco-friendly approach which was found to be in the range of 15–20 nm. These synthesized species exhibited both U.V. Visible and “turn-on” fluorescence responses in aqueous media for the selective detection of the extremely hazardous pesticide azinphos-methyl. These organic nanoparticles also exhibit a good linear relationship in the range of 1–100 μM and the limit of detection (LOD) is 7.4 µM. The selective fluorescence response was also observed in RO water, tap water and orange juice. The FT-IR and DFT studies helped in identifying the specific H-bonding interactions responsible for the selective detection of Azinphos-methylDepartment of Science and Technology, New-Delhi, India | Ref. SP/YO/2021/231

    Bottle aging and storage of wines: a review

    Get PDF
    Wine is perhaps the most ancient and popular alcoholic beverage worldwide. Winemaking practices involve careful vineyard management alongside controlled alcoholic fermentation and potential aging of the wine in barrels. Afterwards, the wine is placed in bottles and stored or distributed in retail. Yet, it is considered that wine achieves its optimum properties after a certain storage time in the bottle. The main outcome of bottle storage is a decrease of astringency and bitterness, improvement of aroma and a lighter and more stable color. This is due to a series of complex chemical changes of its components revolving around the minimized and controlled passage of oxygen into the bottle. For this matter, antioxidants like sulfur oxide are added to avoid excessive oxidation and consequent degradation of the wine. In the same sense, bottles must be closed with appropriate stoppers and stored in adequate, stable conditions, as the wine may develop unappealing color, aromas and flavors otherwise. In this review, features of bottle aging, relevance of stoppers, involved chemical reactions and storage conditions affecting wine quality will be addressed.The research leading to these results was funded by FEDER under the program Interreg V-A Spain-Portugal (POPTEC) 2014-2020 ref. 0377_IBERPHENOL_6_E and ref. 0181_NANOEATERS_ 01_E; to Xunta de Galicia supporting with the Axudas Conecta Peme the IN852A 2018/58 NeuroFood Project and the program EXCELENCIA-ED431F 2020/12; to Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003) and by the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBIJTI-2019), the JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The research leading to these results was supported by MICINN supporting the Ramón & Cajal grant for M.A. Prieto (RYC-2017-22891); by Xunta de Galicia and University of Vigo supporting the post-doctoral grant of M. Fraga-Corral (ED481B-2019/096).info:eu-repo/semantics/publishedVersio

    Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies

    Get PDF
    Arbutus unedo L. (strawberry tree) has showed considerable content in phenolic compounds, especially flavan-3-ols (catechin, gallocatechin, among others). The interest of flavan-3-ols has increased due their bioactive actions, namely antioxidant and antimicrobial activities, and by association of their consumption to diverse health benefits including the prevention of obesity, cardiovascular diseases or cancer. These compounds, mainly catechin, have been showed potential for use as natural preservative in foodstuffs; however, their degradation is increased by pH and temperature of processing and storage, which can limit their use by food industry. To model the degradation kinetics of these compounds under different conditions of storage, three kinds of machine learning models were developed: i) random forest, ii) support vector machine and iii) artificial neural network. The selected models can be used to track the kinetics of the different compounds and properties under study without the prior knowledge requirement of the reaction system.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO, Portugal (UIDB/00690/2020); L. Barros thanks the national funding by FCT, P.I., through the institutional scientific employment program-contract. The authors are also grateful to FEDER-Interreg VA España-Portugal (POCTEP) programme for financial support through the project 0377_Iberphenol_6_E and TRANSCoLAB 0612_TRANS_CO_LAB_2_P. G. Astray thanks to the University of Vigo for his contract “Programa de retención de talento investigador da Universidade de Vigo para o 2018” with budget application 0000 131H TAL 641. M.A. Prieto thanks to the MICINN for the financial support for the Ramón and Cajal grant. G. Astray thanks to RapidMiner GmbH. for the Free and Educational version of RapidMiner Studio software.info:eu-repo/semantics/publishedVersio
    corecore