4 research outputs found

    Biochemical and bioactive phytonutrients changes in tissues of two cultivars of fresh-cut cassava in stick form under refrigerated storage

    Get PDF
    The aim of this study was to evaluate the effects of fresh-cut in stick form of two cassava cultivars on their biochemical and antioxidant characteristics, at two harvest times. The fresh cut cassava sticks were packaged in polypropylene, maintained at 5±1ÂșC, with 90±5% relative humidity for 12 days. The concentration of carotenoids, total soluble phenolic compounds and the activity of phenylalanine ammonia lyase and antioxidant capacity were significantly higher for the sticks of cultivar 'Amarela' cassava than for the sticks of cultivar 'Cacau'. The concentrations of carotenoids, total soluble phenolic compounds, and the activity of phenylalanine ammonia lyase and antioxidant capacity were all significantly greater when harvested at 14-month of age. There was a significant increase in the activity of phenylalanine ammonia lyase during the 12 days of storage at 5ÂșC. However, there was a decrease in total carotenoids, soluble phenolic compounds, and in the antioxidant capacity of the two cultivars

    Proposal to change the conserved type of Ipomoea, nom. cons. (Convolvulaceae)

    No full text
    Ipomoea L. is the largest (650–900 species, depending on the concept adopted) and most iconic genus in Convolvulaceae, a family of c. 1880 species (data from Staples, Convolvulaceae Unlimited, 2012 at: http//convolvulaceae.myspecies.info), including the important crop sweetpotato, Ipomoea batatas (L.) Lam. (Tabl. Encycl. 1: 465. 1793), and several ornamental species commonly known as “bindweeds” or “morning glories” (Wilkin in Kew Bull. 54: 853–876. 1999; Mabberley, Mabberley's Plant‐book. 2008). The genus has a long history of taxonomic and nomenclatural problems, mainly for the lack of a clear morphological circumscription and overlap with other genera. In his Species plantarum (1753), Linnaeus distinguished two genera, Convolvulus L. and Ipomoea, whose species suffered numerous re‐arrangements, between Ipomoea and Convolvulus, but especially into numerous more recently described genera, which amount today to a total of 60 (Staples in World Checklist of Vascular Plants, v.2.0. 2020, http://wcvp.science.kew.org/ retrieved 2 Apr 2020)

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
    corecore