807 research outputs found

    Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis

    Get PDF
    This work was supported by a Merit Scholarship from the Islamic Development Bank (to M.M.U.T.), The Agency for Science, Technology and Research, Singapore (A*STAR) (M.F.M.S), the Medical Research Council (MRC) [NIRG GO800203 and Research Grant MR/L002620/1 (to J.J.R.), Program GrantG09000554 (to S.O.R)], The Wellcome Trust [078986/Z/06/Z (to S.O.R.)], the MRC Centre for Obesity and Related Metabolic Disorders (MRC-CORD) [GO600717] and the NIHR Comprehensive Biomedical Research Centre [CG50826].Peer reviewedPublisher PD

    New enzymes for cell surface modification: Towards universal blood and improved organ transplants

    Get PDF
    Mammalian cell surfaces are coated in specific sugar structures, many of which function as antigens and are involved in cellular recognition. Important examples are the oligosaccharide A, B, and H antigens present on red blood cells that differentiate the A, B and O blood types. Enzymatic cleavage of the GalNAc and Gal residues from the cell surface would allow conversion of A and B red blood cells, respectively, to O type. Since Type O blood can be universally donated to patients with the same Rh factor, access to efficient enzymes would greatly broaden and simplify blood supply. We have sought such enzymes in metagenomic libraries derived from the human gut microbiome. Please click Additional Files below to see the full abstract

    Robust, reproducible, industrialized, standard membrane feeding assay for assessing the transmission blocking activity of vaccines and drugs against Plasmodium falciparum.

    Get PDF
    BackgroundA vaccine that interrupts malaria transmission (VIMT) would be a valuable tool for malaria control and elimination. One VIMT approach is to identify sexual erythrocytic and mosquito stage antigens of the malaria parasite that induce immune responses targeted at disrupting parasite development in the mosquito. The standard Plasmodium falciparum membrane-feeding assay (SMFA) is used to assess transmission-blocking activity (TBA) of antibodies against candidate immunogens and of drugs targeting the mosquito stages. To develop its P. falciparum sporozoite (SPZ) products, Sanaria has industrialized the production of P. falciparum-infected Anopheles stephensi mosquitoes, incorporating quantitative analyses of oocyst and P. falciparum SPZ infections as part of the manufacturing process.MethodsThese capabilities were exploited to develop a robust, reliable, consistent SMFA that was used to assess 188 serum samples from animals immunized with the candidate vaccine immunogen, Pfs25, targeting P. falciparum mosquito stages. Seventy-four independent SMFAs were performed. Infection intensity (number of oocysts/mosquito) and infection prevalence (percentage of mosquitoes infected with oocysts) were compared between mosquitoes fed cultured gametocytes plus normal human O(+) serum (negative control), anti-Pfs25 polyclonal antisera (MRA39 or MRA38, at a final dilution in the blood meal of 1:54 as positive control), and test sera from animals immunized with Pfs25 (at a final dilution in the blood meal of 1:9).ResultsSMFA negative controls consistently yielded high infection intensity (mean = 46.1 oocysts/midgut, range of positives 3.7-135.6) and infection prevalence (mean = 94.2%, range 71.4-100.0) and in positive controls, infection intensity was reduced by 81.6% (anti-Pfs25 MRA39) and 97.0% (anti-Pfs25 MRA38), and infection prevalence was reduced by 12.9 and 63.5%, respectively. A range of TBAs was detected among the 188 test samples assayed in duplicate. Consistent administration of infectious gametocytes to mosquitoes within and between assays was achieved, and the TBA of anti-Pfs25 control antibodies was highly reproducible.ConclusionsThese results demonstrate a robust capacity to perform the SMFA in a medium-to-high throughput format, suitable for assessing large numbers of experimental samples of candidate antibodies or drugs

    Anopheles gambiae heat shock protein cognate 70B impedes o'nyong-nyong virus replication

    Get PDF
    Background Phylogenetic and functional analysis was conducted on an Anopheles gambiae gene, ENSANGG00000017398. Based on phylogenetic analysis, this gene belongs to the same lineage as Heat shock protein cognate 70-4 (Hsc70-4) in Drosophila. Accordingly, we propose to name this gene Heat shock protein cognate 70B (HSC70B). We previously reported that expression of HSC70B and other genes including elongation factor-1α (EF-1α) and the agglutinin attachment subunit (agglutinin) were up-regulated in o'nyong-nyong virus (ONNV)-infected female An. gambiae. Double-stranded RNA interferences have been applied to further investigate HSC70B, EF-1α and the agglutinin functions in ONNV replication in An. gambiae. Results Among these three RNAi silenced genes, only dsRNAs of HSC70B (dsHSC70B) promoted ONNV replication in adult An. gambiae compared to the control mosquitoes that were co-injected with ONNV and dsRNA of β-galactosidase (dsβ-gal). ONNV titers from mosquitoes co-injected with dsHSC70B were about 9-fold higher at 6 days post-injection (d.p.i.) as compared to the control mosquitoes. By using ONNV tagged with enhanced green fluorescent protein (ONNV-eGFP), co-injection of ONNV-eGFP with dsHSC70B also showed approximately 2 ~ 3-fold higher GFP expression rates than the controls in the head, thorax, and abdomen of the mosquito. Furthermore, co-injection of ONNV with dsHSC70B significantly reduced the lifespan of adult mosquitoes as compared with the control, co-injection of ONNV with dsβ-gal treated mosquitoes. Conclusion These results indicate that HSC70B plays important roles in homeostasis and suppression of ONNV replication in the vector, An. gambiae. Biological implications of these findings are that while mosquitoes allow ONNV to replicate in them, they also check viral titers so that ONNV infection will result in no harmful effect on mosquitoes. Therefore, mosquitoes can function as vectors of ONNV transmission to humans while ONNV infection in An. gambiae remains asymptomatic.We wish to thank Dr. K. E. Olson and B. D. Foy for his kind gift of infectious clone pONNic-Foy. This research would not have been possible without the assistance of Dr. Mabel Berois with helpful guide. This project was supported by grants R01-AI44273 from NIH/NIAID to F.H.C. D.L.V. was supported by NIH T32 A10753

    Adaptive hypofractionted and stereotactic body radiotherapy for lung tumors with real-time MRI guidance

    Get PDF
    The treatment of central and ultracentral lung tumors with radiotherapy remains an ongoing clinical challenge. The risk of Grade 5 toxicity with ablative radiotherapy doses to these high-risk regions is significant as shown in recent prospective studies. Magnetic resonance (MR) image-guided adaptive radiotherapy (MRgART) is a new technology and may allow the delivery of ablative radiotherapy to these high-risk regions safely. MRgART is able to achieve this by utilizing small treatment margins, real-time gating/tracking and on-table plan adaptation to maintain dose to the tumor but limit dose to critical structures. The process of MRgART is complex and has nuances and challenges for the treatment of lung tumors. We outline the critical steps needed for appropriate delivery of MRgART for lung tumors safely and effectively

    Further development and flight test of an autonomous precision landing system using a parafoil

    Get PDF
    NASA Dryden Flight Research Center and NASA Johnson Space Center are jointly conducting a phased program to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space to a precision landing. The feasibility is being studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighs approximately 120 lb and is flown under a commercially available ram-air parafoil. Key components of the vehicle include the global positioning system (GPS) guidance for navigation, a flight control computer, an electronic compass, a yaw rate gyro, and an onboard data recorder. A flight test program is being used to develop and refine the vehicle. The primary flight goal is to demonstrate autonomous flight from an altitude of 3,000 m (10,000 ft) with a lateral offset of 1.6 km (1.0 mi) to a precision soft landing. This paper summarizes the progress to date. Much of the navigation system has been tested, including a heading tracker that was developed using parameter estimation techniques and a complementary filter. The autoland portion of the autopilot is still in development. The feasibility of conducting the flare maneuver without servoactuators was investigated as a means of significantly reducing the servoactuator rate and load requirements

    THSD1 (Thrombospondin Type 1 Domain Containing Protein 1) Mutation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage

    Get PDF
    Background and Purpose A ruptured intracranial aneurysm (IA) is the leading cause of a subarachnoid hemorrhage (SAH). This study seeks to define a specific gene whose mutation leads to disease. Methods More than 500 IA probands and 100 affected families were enrolled and clinically characterized. Whole exome sequencing was performed on a large family, revealing a segregating THSD1 mutation. THSD1 was sequenced in other probands and controls. Thsd1 loss-of-function studies in zebrafish and mice were used for in vivo analyses, and functional studies performed using an in vitro endothelial cell model. Results A nonsense mutation in THSD1 (thrombospondin type-1 domain-containing protein 1) was identified that segregated with the 9 affected (3 suffered SAH; 6 had unruptured IA) and 13 unaffected family members (LOD score 4.69). Targeted THSD1 sequencing identified mutations in 8 of 507 unrelated IA probands, including 3 who had suffered SAH (1.6% [95% CI, 0.8%–3.1%]). These THSD1 mutations/rare variants were highly enriched in our IA patient cohort relative to 89,040 chromosomes in ExAC database (p\u3c0.0001). In zebrafish and mice, Thsd1 loss-of-function caused cerebral bleeding (which localized to the subarachnoid space in mice) and increased mortality. Mechanistically, THSD1 loss impaired endothelial cell focal adhesion to the basement membrane. These adhesion defects could be rescued by expression of wild-type THSD1 but not THSD1 mutants identified in IA patients. Conclusions This report identifies THSD1 mutations in familial and sporadic IA patients, and shows that THSD1 loss results in cerebral bleeding in two animal models. This finding provides new insight into IA and SAH pathogenesis and provides new understanding of THSD1 function, which includes endothelial cell to extracellular matrix adhesion
    corecore