42 research outputs found

    Differential regulation of cell proliferation and protease secretion by epidermal growth factor and amphiregulin in tumoral versus normal breast epithelial cells

    Get PDF
    Amphiregulin (AR) is a heparin-binding epidermal growth factor (EGF)-related peptide that seems to play an important role in mammary epithelial cell growth regulation. We have investigated the regulation of AR-gene expression and -protein secretion by EGF in normal breast epithelial cells (HMECs), as well as in the tumoral breast epithelial cell lines MCF-7 and MDA-MB231. EGF induced a dose-dependent increase of AR mRNA level in both normal and tumoral cells. Thus, 10−8M EGF stimulated AR expression in HMECs to 140–300% of control. A similar EGF concentration increased AR mRNA level to 550% and 980% of control in MCF-7 and MDA-MB231 cells, respectively. This was accompanied by an accumulation of AR into conditioned culture media. However, HMECs secreted in response to EGF, 5–10 fold more AR than tumour cells. Furthermore, the potential participation of AR in the regulation of the plasminogen activator (PA)/plasmin system was investigated. Whereas HMEC-proliferation was stimulated by AR, the levels of secreted urokinase-type plasminogen activator (uPA) and type-1 plasminogen activator inhibitor (PAi-1) remained unaffected. Conversely, AR failed to regulate the proliferation of tumoral cell lines but induced an accumulation of uPA and PAi-1 into culture media. This was accompanied by an increase of the number of tumoral cells that invaded matrigel in vitro. Moreover, the presence of a neutralizing anti-uPA receptor antibody reversed the increased invasiveness of MDA-MB231 cells induced by AR. These data reveal differential behaviour of normal versus tumoral breast epithelial cells in regard to the action of AR and demonstrate that, in a number of cases, AR might play a significant role in tumour progression through the regulation of the PA/plasmin system. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Procyanidins are potent inhibitors of LOX-1: a new player in the French Paradox

    Get PDF
    Lectin-like oxidized LDL receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL (oxLDL) and plays multiple roles in the development of cardiovascular diseases. We screened more than 400 foodstuff extracts for identifying materials that inhibit oxLDL binding to LOX-1. Results showed that 52 extracts inhibited LOX-1 by more than 70% in cell-free assays. Subsequent cell-based assays revealed that a variety of foodstuffs known to be rich in procyanidins such as grape seed extracts and apple polyphenols, potently inhibited oxLDL uptake in Chinese hamster ovary (CHO) cells expressing LOX-1. Indeed, purified procyanidins significantly inhibited oxLDL binding to LOX-1 while other ingredients of apple polyphenols did not. Moreover, chronic administration of oligomeric procyanidins suppressed lipid accumulation in vascular wall in hypertensive rats fed with high fat diet. These results suggest that procyanidins are LOX-1 inhibitors and LOX-1 inhibition might be a possible underlying mechanism of the well-known vascular protective effects of red wine, the French Paradox

    Validation of plasma proteomic biomarkers relating to brain amyloid burden in the EMIF-Alzheimer's disease multimodal biomarker discovery cohort

    Get PDF
    We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ϵ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure

    Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology

    Get PDF
    Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown. We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes. We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677). We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ 4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts. Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF
    corecore