11 research outputs found

    The Morphostructural, Compositional, and Electrochemical Characterization of Electrodeposited Nanolayers on a New Ti-15Ta-5Zr Alloy

    Get PDF
    A porous, homogeneous, phosphorous-enriched oxide nanolayer was realized on the new Ti-15Ta-5Zr alloy surface by the anodic galvanostatic electrodeposition in phosphoric acid solution. This nanolayer contains TiO2, ZrO2 oxides, tantalum suboxides, and PO43- ions incorporated in the time of the electrodeposition process and has a thickness of 15.5 nm (X-ray photoelectron spectroscopy data). Atomic force microscopy determined a homogeneous roughness. Scanning electron microscopy evinced a porous microstructure that can stimulate the growth of the bone tissue into pores. The presence of the PO43- anions promotes the electrostatic bonds between the nanolayer and different species from the biofluid, namely, osteoinduction. The anodic oxidation nanolayer improved all electrochemical and corrosion parameters conferring superior protection to the substrate by its higher resistance to the ion migration. Impedance spectra showed that the electrodeposited nanolayer is formed by an inner, dense, barrier layer and an outer porous layer. The nanolayer thickened in time, namely, is bioactive. The oxidized nanolayer is able to protect the alloy from ion release, to assure long-term corrosion resistance, to minimize adverse reactions, to increase alloy bioactivity, to stimulate cell growth, and to favor osseointegration

    Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti‐Hf‐Mo‐Sn Alloy

    No full text
    A new superelastic Ti‐23Hf‐3Mo‐4Sn biomedical alloy displaying a particularly large recovery strain was synthesized and characterized in this study. Its native passive film is very thick (18 nm) and contains very protective TiO2, Ti2O3, HfO2, MoO2, and SnO2 oxides (XPS analysis). This alloy revealed nobler electrochemical behavior, more favorable values of the corrosion parameters and open circuit potentials in simulated body fluid in comparison with commercially pure titanium (CP‐Ti) and Ti‐6Al‐4V alloy taken as reference biomaterials in this study. This is due to the favorable influence of the alloying elements Hf, Sn, Mo, which enhance the protective properties of the native passive film on alloy surface. Impedance spectra showed a passive film with two layers, an inner, capacitive, barrier, dense layer and an outer, less insulating, porous layer that confer both high corrosion resistance and bioactivity to the alloy. In vitro tests were carried out in order to evaluate the response of Human Umbilical Vein Endothelial Cells (HUVECs) to Ti‐23Hf‐3Mo‐4Sn alloy in terms of cell viability, cell proliferation, phenotypic marker expression and nitric oxide release. The results indicate a similar level of cytocompatibility with HUVEC cells cultured on Ti‐23Hf‐3Mo‐4Sn substrate and those cultured on the conventional CP‐Ti and Ti‐6Al‐4V metallic materials

    Mechanical Alloying Process Applied for Obtaining a New Biodegradable Mg-xZn-Zr-Ca Alloy

    No full text
    The aim of the present paper is to apply the mechanical alloying process to obtain from powder components a new biodegradable Mg-based alloy powder from the system Mg-xZn-Zr-Ca, with high biomechanical and biochemical performance. Various processing parameters for mechanical alloying have been experimented with the ultimate goal to establish an efficient processing route for the production of small biodegradable parts for the medical domain. It has been observed that for the same milling parameters, the composition of the powders has influenced the powder size and shape. On the other hand, for the same composition, the highest experimented milling speed and time conduct to finer powder particles, almost round-shaped, without pores or various inclusions. The most uniform size has been obtained for the powder sample with 10 wt.%Zn. These powders were finally processed by selective laser melting, an additive manufacturing technology, to obtain a homogeneous experimental sample, without cracking, for future more systematical trials

    Enhancement of the biocompatibility by surface nitriding of a low-modulus titanium alloy for dental implant applications

    No full text
    International audienceTo enhance their longevity, dental implants must be highly biocompatible and must have a low elastic modulus close to that of the bone. They must also possess a high superficial hardness and a high corrosion resistance. For these reasons, a recently developed low-modulus Ti-27Nb alloy with nontoxic elements was treated by gas nitriding at high temperature in this study. A very thin nitrided layer of 0.5 ÎŒm in thickness followed by an enriched nitrogen zone was observed. Consequently, a very high hardness evaluated at about 1800 HV was obtained in surface, which represents an increase of 4-5 times the hardness of the non-nitrided alloy. This superficial hardness was experimentally observed to decrease up to 800 nm in depth from the surface to the core. The low modulus of Ti-27Nb (evaluated at 55 GPa, which is twice lower than the commercially pure titanium) was not affected by the surface nitriding treatment. A better corrosion resistance was observed and a significant decrease in ion release rates for the nitrided alloy (ion release of 1.41 ng/cm compared to the 163.58 ng/cm obtained for the commercially pure titanium at pH = 7.48 in artificial Carter-Brugirard saliva). The cytocompatibility was not compromised and the cell viability performed on human osteoblasts, fibroblastic cells, and epithelial cells was enhanced on the nitrided surface in comparison with the non-nitrided surface. These combined properties make the nitrided Ti-27Nb alloy a good candidate for dental implant applications

    Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    Get PDF
    International audienceThe influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantolog

    Microstructure Evolution during Mechanical Alloying of a Biodegradable Magnesium Alloy

    No full text
    The aim of the present work was to apply a mechanical alloying method to obtain a Mg-10Zn-0.5Zr-0.8Ca powder-alloy with morphological and dimensional characteristics, proper for subsequent selective laser melting (SLM) processing. The mechanical alloying process was applied at different values of the milling time. Thus, the evolution of the main morphological and dimensional characteristics of the experimented powder-alloy could be studied. The conclusion of this study is that mechanical alloying possesses good potential to obtain powder-alloy with almost rounded morphology and fine dimensions, proper for further additive manufacturing procedures such as selective laser melting

    Microstructure Evolution during Mechanical Alloying of a Biodegradable Magnesium Alloy

    No full text
    The aim of the present work was to apply a mechanical alloying method to obtain a Mg-10Zn-0.5Zr-0.8Ca powder-alloy with morphological and dimensional characteristics, proper for subsequent selective laser melting (SLM) processing. The mechanical alloying process was applied at different values of the milling time. Thus, the evolution of the main morphological and dimensional characteristics of the experimented powder-alloy could be studied. The conclusion of this study is that mechanical alloying possesses good potential to obtain powder-alloy with almost rounded morphology and fine dimensions, proper for further additive manufacturing procedures such as selective laser melting
    corecore