16 research outputs found

    Genetic and Chemical Evaluation of Trypanosoma brucei Oleate Desaturase as a Candidate Drug Target

    Get PDF
    Background: Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. Methodology: Cultured procyclic (insect-stage) form (PCF) and bloodstream-form (BSF) Trypanosoma brucei cells were treated with 12- and 13-thiastearic acid (12-TS and 13-TS), inhibitors of OD, and the expression of the enzyme was knocked down by RNA interference. The phenotype of these cells was studied. Principal Findings: Growth of PCF T. brucei was totally inhibited by 100 mM of 12-TS and 13-TS, with EC50 values of 4062 and 3062 mM, respectively. The BSF was more sensitive, with EC50 values of 763 and 261 mM, respectively. This growth phenotype was due to the inhibitory effect of thiastearates on OD and, to a lesser extent, on SCD. The enzyme inhibition caused a drop in total unsaturated fatty-acid level of the cells, with a slight increase in oleate but a drastic decrease in linoleate level, most probably affecting membrane fluidity. After knocking down OD expression in PCF, the linoleate content was notably reduced, whereas that of oleate drastically increased, maintaining the total unsaturated fatty-acid level unchanged. Interestingly, the growth phenotype of the RNAi-induced cells was similar to that found for thiastearate-treated trypanosomes, with the former cells growing twofold slower than the latter ones, indicating that the linoleate content itsel

    The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    No full text
    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids

    A lipA (yutB) Mutant, Encoding Lipoic Acid Synthase, Provides Insight into the Interplay between Branched-Chain and Unsaturated Fatty Acid Biosynthesis in Bacillus subtilis ▿ †

    No full text
    Lipoic acid is an essential cofactor required for the function of key metabolic pathways in most organisms. We report the characterization of a Bacillus subtilis mutant obtained by disruption of the lipA (yutB) gene, which encodes lipoyl synthase (LipA), the enzyme that catalyzes the final step in the de novo biosynthesis of this cofactor. The function of lipA was inferred from the results of genetic and physiological experiments, and this study investigated its role in B. subtilis fatty acid metabolism. Interrupting lipoate-dependent reactions strongly inhibits growth in minimal medium, impairing the generation of branched-chain fatty acids and leading to accumulation of copious amounts of straight-chain saturated fatty acids in B. subtilis membranes. Although depletion of LipA induces the expression of the Δ5 desaturase, controlled by a two-component system that senses changes in membrane properties, the synthesis of unsaturated fatty acids is insufficient to support growth in the absence of precursors for branched-chain fatty acids. However, unsaturated fatty acids generated by deregulated overexpression of the Δ5 desaturase functionally replaces lipoic acid-dependent synthesis of branched-chain fatty acids. Furthermore, we show that the cold-sensitive phenotype of a B. subtilis strain deficient in Δ5 desaturase is suppressed by isoleucine only if LipA is present

    The multifunctional isopropyl alcohol dehydrogenase of Phytomonas sp. could be the result of a horizontal gene transfer from a bacterium to the trypanosomatid lineage.

    No full text
    Isopropyl alcohol dehydrogenase (iPDH) is a dimeric mitochondrial alcohol dehydrogenase (ADH), so far detected within the Trypanosomatidae only in the genus Phytomonas. The cloning, sequencing, and heterologous expression of the two gene alleles of the enzyme revealed that it is a zinc-dependent medium-chain ADH. Both polypeptides have 361 amino acids. A mitochondrial targeting sequence was identified. The mature proteins each have 348 amino acids and a calculated molecular mass of 37 kDa. They differ only in one amino acid, which can explain the three isoenzymes and their respective isoelectric points previously found. A phylogenetic analysis locates iPDH within a cluster with fermentative ADHs from bacteria, sharing 74% similarity and 60% identity with Ralstonia eutropha ADH. The characterization of the two bacterially expressed Phytomonas enzymes and the comparison of their kinetic properties with those of the wild-type iPDH and of the R. eutropha ADH strongly support the idea of a horizontal gene transfer event from a bacterium to a trypanosomatid to explain the origin of the iPDH in Phytomonas. Phytomonas iPDH and R. eutropha ADH are able to use a wide range of substrates with similar Km values such as primary and secondary alcohols, diols, and aldehydes, as well as ketones such as acetone, diacetyl, and acetoin. We speculate that, as for R. eutropha ADH, Phytomonas iPDH acts as a safety valve for the release of excess reducing power

    Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei.

    No full text
    Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC(50)) of PCF was 1.0 ± 0.2 μM for Isoxyl and 5 ± 2 μM for 10-TS, whereas BSF appeared more susceptible with EC(50) values 0.10 ± 0.03 μM (Isoxyl) and 1.0 ± 0.6 μM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival

    Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves

    Get PDF
    Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-β mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation

    Gas chromatography profile of total fatty acids from <i>Trypanosoma brucei</i> cells.

    No full text
    <p>Procyclic form (PCF) (A). Bloodstream form (BSF) (B). Pool 1 indicates those fatty acids which are <i>de novo</i> synthesized by the parasite cells and partially taken up from the culture media; pool 2 indicates fatty acids taken up from the culture media plus those resulting from their elongation and desaturation.</p

    RNA interference of oleate desaturase expression in procyclic-form trypanosomes.

    No full text
    <p>Growth curves (logarithmic plot) of procyclic-form cell line 29-13 wild-type cells (wt PCF) and cells transfected with a construct for RNAi of OD. Cells of the transfected clone were cultured in the absence (-tet) and presence of tetracycline (+tet) to induce RNA interference (A). Relative levels of OD mRNA, normalized to tubulin mRNA levels. The results are expressed as percentage of the normalized OD transcripts present in the untransfected control (wt) cells and are the means ± SD of three independent experiments (B).</p

    Changes of the fatty-acid profile of procyclic-form trypanosomes upon RNA interference of oleate desaturase expression.

    No full text
    <p>Procyclic cell line 29-13 (wt PCF) and the cell line containing the OD RNAi construct were grown in the absence (-tet) or presence (+tet) of tetracycline during the indicated time. The abundance of each fatty acid is presented as percentage of the total fatty acids. C16:0, palmitate: C16:1, palmitoleate; C18:0, stearate; C18:1, oleate; C18:2, linoleate; UFAs, unsaturated fatty acids. The results are means ± SD of three independent experiments.</p
    corecore