12,830 research outputs found
A generalized Fellner-Schall method for smoothing parameter estimation with application to Tweedie location, scale and shape models
We consider the estimation of smoothing parameters and variance components in
models with a regular log likelihood subject to quadratic penalization of the
model coefficients, via a generalization of the method of Fellner (1986) and
Schall (1991). In particular: (i) we generalize the original method to the case
of penalties that are linear in several smoothing parameters, thereby covering
the important cases of tensor product and adaptive smoothers; (ii) we show why
the method's steps increase the restricted marginal likelihood of the model,
that it tends to converge faster than the EM algorithm, or obvious
accelerations of this, and investigate its relation to Newton optimization;
(iii) we generalize the method to any Fisher regular likelihood. The method
represents a considerable simplification over existing methods of estimating
smoothing parameters in the context of regular likelihoods, without sacrificing
generality: for example, it is only necessary to compute with the same first
and second derivatives of the log-likelihood required for coefficient
estimation, and not with the third or fourth order derivatives required by
alternative approaches. Examples are provided which would have been impossible
or impractical with pre-existing Fellner-Schall methods, along with an example
of a Tweedie location, scale and shape model which would be a challenge for
alternative methods
Chiral molecules split light: Reflection and refraction in a chiral liquid
A light beam changes direction as it enters a liquid at an angle from another
medium, such as air. Should the liquid contain molecules that lack mirror
symmetry, then it has been predicted by Fresnel that the light beam will not
only change direction, but will actually split into two separate beams with a
small difference in the respective angles of refraction. Here we report the
observation of this phenomenon. We also demonstrate that the angle of
reflection does not equal the angle of incidence in a chiral medium. Unlike
conventional optical rotation, which depends on the path-length through the
sample, the reported reflection and refraction phenomena arise within a few
wavelengths at the interface and thereby suggest a new approach to polarimetry
that can be used in microfluidic volumes
The Effects of Negative Legacies on the Adjustment of Parentally Bereaved Children and Adolescents
This is a report of a qualitative analysis of a sample of bereaved families in which one parent died and in which children scored in the clinical range on the Child Behavior Check List. The purpose of this analysis was to learn more about the lives of these children. They were considered to be at risk of developing emotional and behavioral problems associated with the death. We discovered that many of these “high risk” children had a continuing bond with the deceased that was primarily negative and troubling for them in contrast to a comparison group of children not at risk from the same study. Five types of legacies, not mutually exclusive, were identified: health related, role related, personal qualities, legacy of blame, and an emotional legacy. Coping behavior on the part of the surviving parent seemed to make a difference in whether or not a legacy was experienced as negative
Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments
We show that the standard Dirac phase factor is not the only solution of the
gauge transformation equations. The full form of a general gauge function (that
connects systems that move in different sets of scalar and vector potentials),
apart from Dirac phases also contains terms of classical fields that act
nonlocally (in spacetime) on the local solutions of the time-dependent
Schr\"odinger equation: the phases of wavefunctions in the Schr\"odinger
picture are affected nonlocally by spatially and temporally remote magnetic and
electric fields, in ways that are fully explored. These contributions go beyond
the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to
cases of particles passing through static magnetic or electric fields leads to
cancellations of Aharonov-Bohm phases at the observation point; these are
linked to behaviors at the semiclassical level (to the old Werner & Brill
experimental observations, or their "electric analogs" - or to recent reports
of Batelaan & Tonomura) but are shown to be far more general (true not only for
narrow wavepackets but also for completely delocalized quantum states). By
using these cancellations, certain previously unnoticed sign-errors in the
literature are corrected. (ii) Application to time-dependent situations
provides a remedy for erroneous results in the literature (on improper uses of
Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and
a field-nonlocal part: their competition is shown to recover Relativistic
Causality in earlier "paradoxes" (such as the van Kampen thought-experiment),
while a more general consideration indicates that the temporal nonlocalities
found here demonstrate in part a causal propagation of phases of quantum
mechanical wavefunctions in the Schr\"odinger picture. This may open a direct
way to address time-dependent double-slit experiments and the associated causal
issuesComment: 49 pages, 1 figure, presented in Conferences "50 years of the
Aharonov-Bohm effect and 25 years of the Berry's phase" (Tel Aviv and
Bristol), published in Journ. Phys. A. Compared to the published paper, this
version has 17 additional lines after eqn.(14) for maximum clarity, and the
Abstract has been slightly modified and reduced from the published 2035
characters to the required 1920 character
Programmable telemetry system Patent
Time division multiplexed telemetry transmitting system controlled by programmed memor
Recommended from our members
‘Jugglers’, ‘copers’ and ‘strugglers’: academics’ perceptions of being a head of department in a post-1992 UK university and how it influences their future careers
This study investigates the experiences of academics who became department heads in a post-1992 UK university and explores the influence that being in the position has on their planned future academic career. Drawing on life history interviews undertaken with 17 male and female heads of department, the paper constitutes an in-depth study of their careers in the same university. The findings suggest that academics who become department heads not only need the capacity to assume a range of personal and professional identities, but need flexibility to regularly adopt and switch between them. Whether individuals can successfully balance and manage such multiple identities, or whether they experience major conflicts within or between them, greatly affects their experiences of being a head of department and seems to influence their subsequent career decisions. The paper concludes by proposing a conceptual framework and typology to interpret the career trajectories of academics that became department heads in the case university
The Full Range of Predictions for B Physics From Iso-singlet Down Quark Mixing
We extend the range of predictions of the isosinglet (or vector) down quark
model to the fully allowed physical ranges, and also update this with the
effect of new physics constraints. We constrain the present allowed ranges of
sin(2*beta) and sin(2*alpha), gamma, x_s, and A_{B_s}. In models allowing
mixing to a new isosinglet down quark (as in E_6) flavor changing neutral
currents are induced that allow a Z^0 mediated contribution to B-Bbar mixing
and which bring in new phases. In (rho, eta), (x_s, sin(gamma)), and (x_s,
A_{B_s}) plots for the extra isosinglet down quark model which are herein
extended to the full physical range, we find new allowed regions that will
require experiments on sin(gamma) and/or x_s to verify or to rule out an extra
down quark contribution.Comment: 13 pages in RevTeX, 7 postscript figure
Managed moves: schools collaborating for collective gain
Government guidance in the United Kingdom encourages groups of schools to take collective responsibility for supporting and making provision for excluded pupils and those at risk of exclusion. Managed-moves are one way that some schools and authorities are enacting such guidance. This paper presents the results of an evaluation of one such scheme. The scheme, involving seven neighbouring secondary schools, was nearing its first year of completion. The paper draws primarily on interview data with pupils, parents and school staff to describe a number of positive outcomes associated with the scheme and to explore how these were achieved. We found that while some of these could be attributed directly to the managed-move, others arose from the more inclusive ethos and practices of particular schools. The concepts of tailored support, care and commitment emerged as strong themes that underpinned the various practical ways in which some schools in the cluster were able to re-engage 'at-risk' pupils. As managed moves become more widely practiced it will be important to remember that it is how the move proceeds and develops rather than the move itself that will ultimately make the difference for troubled and troublesome pupils
Image Coaddition with Temporally Varying Kernels
Large, multi-frequency imaging surveys, such as the Large Synaptic Survey
Telescope (LSST), need to do near-real time analysis of very large datasets.
This raises a host of statistical and computational problems where standard
methods do not work. In this paper, we study a proposed method for combining
stacks of images into a single summary image, sometimes referred to as a
template. This task is commonly referred to as image coaddition. In part, we
focus on a method proposed in previous work, which outlines a procedure for
combining stacks of images in an online fashion in the Fourier domain. We
evaluate this method by comparing it to two straightforward methods through the
use of various criteria and simulations. Note that the goal is not to propose
these comparison methods for use in their own right, but to ensure that
additional complexity also provides substantially improved performance
Topological phase for entangled two-qubit states and the representation of the SO(3)group
We discuss the representation of the group by two-qubit maximally
entangled states (MES). We analyze the correspondence between and the
set of two-qubit MES which are experimentally realizable. As a result, we offer
a new interpretation of some recently proposed experiments based on MES.
Employing the tools of quantum optics we treat in terms of two-qubit MES some
classical experiments in neutron interferometry, which showed the -phase
accrued by a spin- particle precessing in a magnetic field. By so doing,
we can analyze the extent to which the recently proposed experiments - and
future ones of the same sort - would involve essentially new physical aspects
as compared with those performed in the past. We argue that the proposed
experiments do extend the possibilities for displaying the double connectedness
of , although for that to be the case it results necessary to map
elements of onto physical operations acting on two-level systems.Comment: 25 pages, 9 figure
- …