8,256 research outputs found

    Studies on Ethylene Oxide-freon 12 Decontamination and Dry-Heat Sterilization Cycles

    Get PDF
    Ethylene oxide-Freon decontamination and heat sterilization cycle

    Effects of ethylene oxide-Freon 12 decontamination and dry heat sterilization procedures on polymeric products

    Get PDF
    Effects of ethylene oxide-Freon 12 decontamination and dry heat sterilization procedures on potential spacecraft polymeric material

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    San Jacinto Intrusive Complex: 2. Geochemistry

    Get PDF
    Rocks from three large (>100^2 km) tonalitic intrusions exposed in the San Jacinto Mountains of southern California show a restricted compositional range of between 63 and 68 wt % SiO_2 for all but volumetrically minor felsic differentiates (with Si0_2≈70 wt %). All rocks with less than 65.5 wt % SiO_2 show linear element-element covariation. Felsic differentiates have characteristics (higher SiO_2, K_2O, Rb, Ba, U; higher and variable rare earth elements) consistent with derivation by in situ fractionation; rocks with between 65.5 and 70 wt % SiO_2 have intermediate characteristics and are interpreted as derived from liquids formed by mixing “primitive” liquids with fractionated liquids within an intermittently recharged, continuously solidifying magma chamber. Mafic inclusions extend the compositional trends of the mafic tonalites to 55 wt % SiO_2. The chemical variations of both inclusions and more mafic tonalites are interpreted as resulting from processes acting before injection of their parental liquids into the observed crustal magma chambers. Effects of chamber processes are minor for all but the most felsic rocks. The major effect of recharge is to buffer the thermal and chemical properties of liquids within the magma chambers, yielding large volumes of relatively homogeneous tonalite. For those elements where the bulk distribution coefficient is between about 0.5 and 2, concurrent recharge and solidification produces rocks that closely approximate the composition of the added liquids. Estimated Rayleigh numbers for these liquids are high (>10^(10)), implying convection throughout much of the solidification history of each chamber. Existence of trace element variations within analyzed rocks imply that convection was not totally efficient at homogenizing the various batches of liquid added to each chamber

    Alternate wet/dry irrigation in rice cultivation: a practical way to save water and control malaria and Japanese encephalitis?

    Get PDF
    Water management / Water scarcity / Water use efficiency / Water conservation / Irrigated farming / Waterborne diseases / Rice / Malaria / Disease vectors / Productivity / Flood irrigation / Environmental control / Climate / China / East Africa / India / Indonesia / Japan / Philippines / Portugal / USA

    Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy

    Full text link
    We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum entropy achieves high energy resolution without significant roundoff error, machine precision or numerical instability limitations. If controlled statistical or systematic errors are acceptable, cpu and memory requirements scale linearly in the number of states. The inference of spectral properties from moments is much better conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial approximation, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier integrals of positive non-analytic functions. We compare the performance of kernel polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure

    Consistent Application of Maximum Entropy to Quantum-Monte-Carlo Data

    Full text link
    Bayesian statistics in the frame of the maximum entropy concept has widely been used for inferential problems, particularly, to infer dynamic properties of strongly correlated fermion systems from Quantum-Monte-Carlo (QMC) imaginary time data. In current applications, however, a consistent treatment of the error-covariance of the QMC data is missing. Here we present a closed Bayesian approach to account consistently for the QMC-data.Comment: 13 pages, RevTeX, 2 uuencoded PostScript figure

    Description of recent large-qq neutron inclusive scattering data from liquid 4^4He

    Get PDF
    We report dynamical calculations for large-qq structure functions of liquid 4^4He at TT=1.6 and 2.3 K and compare those with recent MARI data. We extend those calculations far beyond the experimental range q\le 29\Ain in order to study the approach of the response to its asymptotic limit for a system with interactions having a strong short-range repulsion. We find only small deviations from theoretical 1/q1/q behavior, valid for smooth VV. We repeat an extraction by Glyde et al of cumulant coefficients from data. We argue that fits determine the single atom momentum distribution, but express doubt as to the extraction of meaningful Final State Interaction parameters.Comment: 37 pages, 13 postscript fig
    corecore