412 research outputs found

    Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation

    Get PDF
    Concerted political attention has focused on reducing deforestation1,2,3, and this remains the cornerstone of most biodiversity conservation strategies4,5,6. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes6. These disturbances occur both within forests, including selective logging and wildfires7,8, and at the landscape level, through edge, area and isolation effects9. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code5, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems

    Aspergillus fumigatus Stimulates the NLRP3 Inflammasome through a Pathway Requiring ROS Production and the Syk Tyrosine Kinase

    Get PDF
    Invasive aspergillosis (IA) is a life-threatening disease that occurs in immunodepressed patients when infected with Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans. Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3 inflammasome assembly, caspase-1 activation and IL-1β release from a human monocyte cell line. The ability of Aspergillus hyphae to activate the NLRP3 inflammasome in the monocytes requires K+ efflux and ROS production. In addition, our data show that NLRP3 inflammasome activation as well as pro-IL-1β expression relies on the Syk tyrosine kinase, which is downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits transcription of the gene encoding IL-1β. Thus, our data demonstrate that the innate immune response against A. fumigatus infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1β; and a second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and secretion of the mature cytokine

    Lymphocyte proliferation to mycobacterial antigens is detectable across a spectrum of HIV-associated tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying novel TB diagnostics is a major public health priority. We explored the diagnostic characteristics of antimycobacterial lymphocyte proliferation assays (LPA) in HIV-infected subjects with latent or active TB.</p> <p>Methods</p> <p>HIV-infected subjects with bacille Calmette Guérin (BCG) scars and CD4 counts ≥ 200 cells/mm<sup>3 </sup>entering a TB booster vaccine trial in Tanzania had baseline in vivo and in vitro immune tests performed: tuberculin skin tests (TST), LPA and five day assays of interferon gamma (IFN-γ) release. Assay antigens were early secreted antigenic target 6 (ESAT-6), antigen 85 (Ag85), and <it>Mycobacterium tuberculosis </it>whole cell lysate (WCL). Subjects were screened for active TB at enrollment by history, exam, sputum smear and culture. We compared antimycobacterial immune responses between subjects with and without latent or active TB at enrollment.</p> <p>Results</p> <p>Among 1885 subjects screened, 635 had latent TB and 13 had active TB. Subjects with latent TB were more likely than subjects without TB to have LPA responses to ESAT-6 (13.2% vs. 5.5%, P < 0.0001), Ag85 (18.7% vs. 3.1%, P < 0.0001), and WCL (45.7% vs. 17.1%, P < 0.0001). Subjects with active TB also were more likely than those without active TB to have detectable LPA responses to ESAT-6 (38.5% vs. 8.1%, P = 0.0001), Ag85 (46.2% vs. 8.5%, P < 0.0001), and WCL (61.5% vs. 27.0%, P = 0.0053). In subjects with a positive TST, LPA responses to ESAT-6, Ag85 and WCL were more common during active TB (p < 0.0001 for all tests). In diagnosing active TB, in vivo and in vitro tests of mycobacterial immune responses had sensitivity and specificity as follows: TST 84.6% and 65.5%, ESAT-6 LPA 38.5% and 92.0%, Ag85 LPA 46.2% and 91.5%, and WCL LPA 61.5% and 73.0%. Detectable LPA responses were more common in patients with higher CD4 counts, and higher HIV viral loads.</p> <p>Conclusion</p> <p>Lymphoproliferative responses to mycobacteria are detectable during HIV-associated active TB, and are less sensitive but more specific than TST.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier NCT00052195.</p
    corecore