3,317 research outputs found

    Competencies in rheumatology: a European framework

    Get PDF
    The aims, structure, methods and educational experiences employed in the training of rheumatologists vary from one national programme to another, according to traditions, rules and resources. Mutual recognition of titles, the free movement of labour and the striving towards for high-quality standards in medical care in Europe demand that efforts and progress are made to ensure that similar competencies are achieved by different programmes. The European Rheumatology Curriculum Framework, developed by the European Board of Rheumatology, is meant to be a step towards the harmonization of rheumatology specialist training within the European Union, by providing a reference framework to the development and benchmarking of national curricula for the specialist training of rheumatologists. The European Rheumatology Curriculum Framework has now been endorsed by scientific and educational bodies in 17 member countries. It has been provided with a contextualized review of good practice in curriculum planning and development - the European Board of Rheumatology Educational Guide

    SAT-based Explicit LTL Reasoning

    Full text link
    We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability tool, Aalta\_v2.0, which is built on top of the MiniSAT SAT solver. We test the effectiveness of this approach by demonnstrating that Aalta\_v2.0 significantly outperforms all existing LTL satisfiability solvers. Furthermore, we show that the framework can be extended from propositional LTL to assertional LTL (where we allow theory atoms), by replacing MiniSAT with the Z3 SMT solver, and demonstrating that this can yield an exponential improvement in performance

    Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration

    Get PDF
    Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications

    SimpleCAR: An Efficient Bug-Finding Tool Based on Approximate Reachability

    Get PDF
    We present a new safety hardware model checker SimpleCAR that serves as a reference implementation for evaluating Complementary Approximate Reachability (CAR), a new SAT-based model checking framework inspired by classical reachability analysis. The tool gives a “bottom-line” performance measure for comparing future extensions to the framework. We demonstrate the performance of SimpleCAR on challenging benchmarks from the Hardware Model Checking Competition. Our experiments indicate that SimpleCAR is particularly suited for unsafety checking, or bug-finding; it is able to solve 7 unsafe instances within 1 h that are not solvable by any other state-of-the-art techniques, including BMC and IC3/PDR, within 8 h. We also identify a bug (reports safe instead of unsafe) and 48 counterexample generation errors in the tools compared in our analysis

    The incidence of cancer in patients with rheumatoid arthritis and a prior malignancy who receive TNF inhibitors or rituximab: results from the British Society for Rheumatology Biologics Register-Rheumatoid Arthritis

    Get PDF
    Objective. To explore the influence of TNF inhibitor (TNFi) therapy and rituximab (RTX) upon the incidence of cancer in patients with RA and prior malignancy. Methods. The study population comprised RA subjects with a prior malignancy reported to the UK national cancer registers, recruited to the British Society for Rheumatology Biologics Register from 2001 to 2013. We compared rates of first incident malignancy in a TNFi cohort, RTX cohort and synthetic DMARDs (sDMARD) cohort. Results. We identified 425 patients with a prior malignancy from 18 000 RA patients in the study. Of these, 101 patients developed a new malignancy. The rates of incident malignancy were 33.3 events/1000 person-years (py) in the TNFi cohort, 24.7 events/1000 py in the RTX cohort and 53.8 events/1000 py in the sDMARD cohort. The age- and gender-adjusted hazard ratio was 0.55 (95% CI: 0.35, 0.86) for the TNFi cohort and 0.43 (95% CI: 0.10, 1.80) for the RTX cohort in comparison with the sDMARDs cohort. The 17.0% of patients in the sDMARDs cohort had a recurrence of the same cancer in comparison with the 12.8% and the 4.3% in the TNFi and RTX cohorts, respectively. Conclusions. Although numbers are still low, it seems that patients with RA and prior malignancy selected to receive either a TNFi or RTX in the UK do not have an increased risk of future incident malignancy

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition

    Get PDF
    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications

    Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization

    Get PDF
    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Cooccurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9-86.6) and the negative predictive value 84.7% (80.6-88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9-17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47-0.68). The odds ratio was 18.2 (9.39-35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH

    Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties.

    Get PDF
    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.Peer Reviewe
    corecore