61,059 research outputs found

    Quantum Electrodynamics vacuum polarization solver

    Get PDF
    The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations is of relevance for many near term experiments associated with high intensity radiation sources and represents a milestone in describing scenarios of extreme energy density. We present a generalized finite-difference time-domain solver that can incorporate the modifications to Maxwell's equations due to vacuum polarization. Our multidimensional solver reproduced in one dimensional configurations the results for which an analytic treatment is possible, yielding vacuum harmonic generation and birefringence. The solver has also been tested for two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We employ this solver to explore different types of counter-propagating configurations that can be relevant for future planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic field intensities

    A Physical Model for Co-evolution of QSOs and of their Spheroidal Hosts

    Full text link
    At variance with most semi-analytic models, in the Anti-hierarchical Baryon Collapse scenario (Granato et al. 2001, 2004) the main driver of the galaxy formation and evolution is not the merging sequence but are baryon processes. This approach emphasizes, still in the framework of the hierarchical clustering paradigm for dark matter halos, feedback processes from supernova explosions and from active nuclei, that tie together star formation in spheroidal galaxies and the growth of black holes at their centers. We review some recent results showing the remarkably successful predictive power of this scenario, which allows us to account for the evolution with cosmic time of a broad variety of properties of galaxies and active nuclei, which proved to be very challenging for competing models.Comment: Invited talk at the Specola Vaticana Workshop on "AGN and Galaxy Evolution", Castel Gandolfo, 3-6 October 2005, 10 pages, 2 figure

    From First Galaxies to QSOs: feeding the baby monsters

    Full text link
    We present a physical model for the coevolution of massive spheroidal galaxies and active nuclei at their centers. Supernova heating is increasingly effective in slowing down the star formation and in driving gas outflows in smaller and smaller dark matter halos. Thus the more massive protogalaxies virializing at early times are the sites of faster star formation. The correspondingly higher radiation drag causes a faster angular momentum loss by the gas and induces a larger accretion rate onto the central black hole. In turn, the kinetic energy of the outflows powered by the active nuclei can unbind the residual gas in a time shorter for larger halos. The model accounts for a broad variety of dynamical, photometric and metallicity properties of early-type galaxies, for the M_BH -- \sigma relation and for the local supermassive black-hole mass function.Comment: 6 pages, contributed paper to Proceedings of the Conference on "Growing Black Holes" held in Garching, Germany, on June 21-25, 2004, edited by A. Merloni, S. Nayakshin and R. Sunyaev, Springer-Verlag series of "ESO Astrophysics Symposia

    Structural and chemical characterization of silica spheres before and after modification by silanization for trypsin immobilization.

    Get PDF
    In the last decades, silica particles of a variety of sizes and shapes have been characterized and chemically modified for several applications, from chromatographic separation to dental supplies. The present study proposes the use of aminopropyl triethoxysilane (APTS) silanized silica particles to immobilize the proteolytic enzyme trypsin for the development of a bioreactor. The major advantage of the process is that it enables the polypeptides hydrolysis interruption simply by removing the silica particles from the reaction bottle. Silanized silica surfaces showed significant morphological changes at micro- and nanoscale level. Chemical characterization showed changes in elemental composition, chemical environment, and thermal degradation. Their application as supports for trypsin immobilization showed high immobilization efficiency at reduced immobilization times, combined with more acidic conditions. Indirect immobilization quantification by reversed-phase ultrafast high performance liquid chromatography proved to be a suitable approach due to its high linearity and sensitivity. Immobilized trypsin activities on nonmodified and silanized silica showed promising features (e.g., selective hydrolysis) for applications in proteins/peptides primary structure elucidation for proteomics. Silanized silica system produced some preferential targeting peptides, probably due to the hydrophobicity of the nanoenvironment conditioned by silanization

    A multiband radiometer and data acquisition system for remote sensing field research

    Get PDF
    Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing

    A model for structural defects in nanomagnets

    Full text link
    A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic
    corecore