9 research outputs found

    Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering

    Get PDF
    A three-dimensional (3D) scaffolding system for chondrocytes culture has been produced by agglomeration of cells and gelatin microparticles with a mild centrifuging process. The diameter of the microparticles, around 10 μ, was selected to be in the order of magnitude of the chondrocytes. No gel was used to stabilize the construct that maintained consistency just because of cell and extracellular matrix (ECM) adhesion to the substrate. In one series of samples the microparticles were charged with transforming growth factor, TGF-β1. The kinetics of growth factor delivery was assessed. The initial delivery was approximately 48 % of the total amount delivered up to day 14. Chondrocytes that had been previously expanded in monolayer culture, and thus dedifferentiated, adopted in this 3D environment a round morphology, both with presence or absence of growth factor delivery, with production of ECM that intermingles with gelatin particles. The pellet was stable from the first day of culture. Cell viability was assessed by MTS assay, showing higher absorption values in the cell/unloaded gelatin microparticle pellets than in cell pellets up to day 7. Nevertheless the absorption drops in the following culture times. On the contrary the cell viability of cell/TGF-β1 loaded gelatin microparticle pellets was constant during the 21 days of culture. The formation of actin stress fibres in the cytoskeleton and type I collagen expression was significantly reduced in both cell/gelatin microparticle pellets (with and without TGF-β1) with respect to cell pellet controls. Total type II collagen and sulphated glycosaminoglycans quantification show an enhancement of the production of ECM when TGF-β1 is delivered, as expected because this growth factor stimulate the chondrocyte proliferation and improve the functionality of the tissue.JLGR acknowledge the support of the Spanish Ministry of Education through project No. MAT2010-21611-C03-01 (including the FEDER financial support). The support of the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative of the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) is also acknowledged

    Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges

    Get PDF
    Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions

    Injectable Gels for Dental and Craniofacial Applications

    No full text
    The use of injectable scaffolds is considered a promising approach in craniofacial tissue regeneration, as they can be introduced with minimally invasive surgery, thus reducing the risk of surgery complications and improving postoperative recovery. In this chapter, comprehensive descriptions of chemically and physically cross-linked hydrogels that can be used as injectable scaffolds for dental and craniofacial application are presented. Nanocomposite hydrogels, in which nano-sized particles may serve as reinforcing agents and impart functionality to the hydrogels, are also discussed. Special attention is given to peptide amphiphiles which can self-assemble into supramolecular configuration mimicking the extracellular matrix (ECM) structure. Finally, injectable microspheres and different techniques of fabrication are discussed in this chapter

    Alginate: Pharmaceutical and Medical Applications

    No full text
    Due to their outstanding properties in terms of mild gelation conditions and simple functionalization, biocompatibility, low toxicity, biodegradability, non-antigenicity and chelating ability, as well as relatively low cost, alginates have been widely used in a variety of biomedical applications including tissue engineering and drug delivery systems. Smart alginate hydrogels for on-demand drug release in response to environmental stimuli and 3D bioprinting will play an important role in the future. These and the introduction of appropriate cell interactive features will be crucial for many tissue engineering applications. The focus of the present chapter is to highlight the great potential of the alginates as biomaterial for biomedical applications and to discuss the role that alginate-based materials are likely to play in biomedical applications in the future.info:eu-repo/semantics/publishedVersio
    corecore