62 research outputs found

    O uso da PCR em tempo real para o estudo da carga parasitária e dos níveis transcricionais durante a infecção experimental por Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is causative agent of Chagas disease, one of most neglected tropical diseases. Estimated that about 11 million people worldwide are infected by T. cruzi and about 6 to 7 million people are at risk in endemic areas. During the process of invasion of host and parasite interact enabling signal transduction and gene expression modulation in response to invasion. The diversity of activated proteins and pathways to repair the damage by disruption of the plasma membrane interest to us and thus present study developed a new form of detection and quantitation by polymerase chain reaction in real time (qPCR) of parasitic load T. cruzi and quantified transcriptional levels relative (RT-qPCR) of dysferlin, Sphingomyelin acid esferase (ASM), transcription factor EB (TFEB) Galectins 1 and 3 and Annexin A2. This study demonstrated that quantification by real time PCR using primers P21fw and P21rv was specific and sensitive for detection of T. cruzi in vivo and in vitro, as well as transcriptional levels of genes related to cytoskeletal organization and repair plasma membrane are modulated in response to damage generated by parasite.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)Trypanosoma cruzi é o agente causador da doença de Chagas, uma das doenças tropicais mais negligenciadas. Estima-se que cerca de 11 milhões de pessoas no mundo estão infectadas por T. cruzi e cerca de 6 a 7 milhões de pessoas estão em risco por encontrarem-se em áreas endêmicas. Durante o processo de invasão moléculas do parasita e do hospedeiro interagem permitindo a transdução de sinal e a expressão de genes de modulação em resposta à invasão. A diversidade de proteínas e vias acionadas para reparar a lesão pela ruptura da membrana plasmática nos interessou e dessa forma o presente estudo desenvolveu uma nova forma de detecção e quantificação por reação em cadeia da polimerase em tempo real (qPCR) da carga parasitária de T. cruzi e a quantificou os níveis transcricionais relativos (RT-qPCR) da Disferlina, Esfingomielina esferase ácida (ASM), Fator de Transcrição EB (TFEB), Galectinas 1 e 3 e Anexina A2. Neste estudo, foi demonstrado que a quantificação por PCR em tempo real utilizando os iniciadores P21fw e P21rv foi específico e sensível para a detecção de T. cruzi in vivo e in vitro, bem como os níveis transcricionais de genes relacionados a organização do citoesqueleto e reparo de membrana plasmática são moduladas em resposta ao dano gerado pelo parasita

    Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy

    Get PDF
    Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruziit is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.Univ Fed Sao Paulo, Escola Paulista Med, Departamento Microbiol Imunol Parasitol, BR-05508 Sao Paulo, SP, BrazilUniv Fed Uberlandia, Inst Ciencias Biomed, Dept Imunol, Lab Tripanosomatideos, Uberlandia, MG, BrazilUniv Fed Uberlandia, Inst Genet & Bioquim, Lab Bioquim & Toxinas Animais, Uberlandia, MG, BrazilCeTICS, Inst Butantan, Sao Paulo, BrazilUniv Fed Uberlandia, Fac Med, Centro Referencia Nacl Dermatol Sanitaria Hanseni, Lab Patol Mol & Biotecnol, Uberlandia, MG, BrazilUniv Fed Uberlandia, Inst Ciencias Biomed, Dept Immunol, Lab Osteoimunol & Imunol Tumores, Uberlandia, MG, BrazilUniv Fed Sao Paulo, Escola Paulista Med, Departamento Microbiol Imunol Parasitol, BR-05508 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Escola Paulista Med, Departamento Microbiol Imunol Parasitol, BR-05508 Sao Paulo, SP, BrazilWeb of Scienc

    A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi

    Get PDF
    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. in these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D H-1 nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure.Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)INBEQMeDIUniv Fed Uberlandia, Inst Ciencias Biomed, BR-38400 Uberlandia, MG, BrazilUniv São Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Vila Mariana, SP, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Biol Geral, Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Vila Mariana, SP, BrazilFAPESP: 2010/51867-6FAPESP: 2012/21153-7FAPEMIG: APQ-00621-11FAPEMIG: APQ-00305-12CAPES: 23038.005295/2011-40Web of Scienc

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
    corecore