36,314 research outputs found

    SLIC Based Digital Image Enlargement

    Full text link
    Low resolution image enhancement is a classical computer vision problem. Selecting the best method to reconstruct an image to a higher resolution with the limited data available in the low-resolution image is quite a challenge. A major drawback from the existing enlargement techniques is the introduction of color bleeding while interpolating pixels over the edges that separate distinct colors in an image. The color bleeding causes to accentuate the edges with new colors as a result of blending multiple colors over adjacent regions. This paper proposes a novel approach to mitigate the color bleeding by segmenting the homogeneous color regions of the image using Simple Linear Iterative Clustering (SLIC) and applying a higher order interpolation technique separately on the isolated segments. The interpolation at the boundaries of each of the isolated segments is handled by using a morphological operation. The approach is evaluated by comparing against several frequently used image enlargement methods such as bilinear and bicubic interpolation by means of Peak Signal-to-Noise-Ratio (PSNR) value. The results obtained exhibit that the proposed method outperforms the baseline methods by means of PSNR and also mitigates the color bleeding at the edges which improves the overall appearance.Comment: 6 page

    Meson decay in the Fock-Tani Formalism

    Full text link
    The Fock-Tani formalism is a first principle method to obtain effective interactions from microscopic Hamiltonians. Usually this formalism was applied to scattering, here we introduced it to calculate partial decay widths for mesons.Comment: Presented at HADRON05 XI. "International Conference on Hadron Spectroscopy" Rio de Janeiro, Brazil, August 21 to 26, 200

    Glueball-glueball scattering in a constituent gluon model

    Get PDF
    In this work we use a mapping technique to derive in the context of a constituent gluon model an effective Hamiltonian that involves explicit gluon degrees of freedom. We study glueballs with two gluons using the Fock-Tani formalism. In the present work we consider two possibilities for 0++0^{++}: (i) as a pure ssˉs\bar{s} and calculate, in the context of a quark interchange picture, the cross-section; (ii) as a glueball where a new calculation for this cross-section is made, in the context of the constituent gluon model, with gluon interchange.Comment: Proceedings of the International Workshop IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics (HADRON-RANP 2004

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl

    Predicted defect induced vortex core switching in thin magnetic nanodisks

    Full text link
    We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.Comment: 11pages, Revtex format, 17 figure
    • …
    corecore