10 research outputs found

    Influence of central obesity in estimating maximal oxygen uptake

    Get PDF
    OBJECTIVE: To assess the influence of central obesity on the magnitude of the error of estimate of maximal oxygen uptake in maximal cycling exercise testing. METHOD: A total of 1,715 adults (68% men) between 18-91 years of age underwent cardiopulmonary exercise testing using a progressive protocol to volitional fatigue. Subjects were stratified by central obesity into three quartile ranges: Q1, Q2-3 and Q4. Maximal oxygen uptake [mL.(kg.min)-1] was estimated by the attained maximal workload and body weight using gender- and population-specific equations. The error of estimate [mL.(kg.min)-1] and percent error between measured and estimated maximal oxygen uptake values were compared among obesity quartile ranges. RESULTS: The error of estimate and percent error differed (mean ± SD) for men (Q1=1.3±3.7 and 2.0±10.4; Q2-3=0.5±3.1 and -0.5±13.0; and Q4=-0.3±2.8 and -4.5±15.8 (

    Cardiovascular Statistics - Brazil 2021.

    Get PDF
    This is the 2021 edition of the Cardiovascular Statistics – Brazil , a multi-institutional effort to periodically provide updated information on the epidemiology of heart diseases and stroke in Brazil. The report incorporates official statistics provided by the Brazilian Ministry of Health and other government agencies, by the GBD project led by the IHME of the University of Washington, as well as data generated by other sources and scientific studies, such as cohorts and registries, on CVDs and their risk factors. The document is directed to researchers, clinicians, patients, healthcare policy makers, media professionals, the public, and others who seek comprehensive national data available on heart disease and stroke

    Pre-Participation Physical Fitness does not Influence Adherence to a Supervised Exercise Program

    No full text
    Abstract Background: Exercise-based cardiac rehabilitation tends to reduce mortality. However, it requires medium/long-term adherence to regular physical exercise. It is relevant to identify the variables that affect adherence to an supervised exercise program (SEP). Objective: To evaluate the influence of pre-participation levels of aerobic and non-aerobic physical fitness components in medium-term adherence to SEP. Methods: A total of 567 SEP participants (65 ± 12 years) (68% men) were studied. Participants adherent to the program for less than 6 months (48%) (non-adherent - NAD) were compared with 52% of participants who were adherent for 6 months or more (adherents - AD). In the non-aerobic fitness, flexibility (FLX) (Flexitest) and muscle power (MPW)/body weight in standing rowing (watts/kg) were evaluated while aerobic fitness was obtained by direct measure of VO2max/body weight (VO2). These measurements were normatized for sex and age based on percentiles (P) (P-FLX/P-MPW) of reference data or percentages of predicted (P-VO2). Additionally, AD and NAD with extreme results (tertiles) were simultaneously compared for the three variables. Results: There was no difference between AD and NAD for non-aerobic results, in median [P25-P75], P-FLX: 30 [13-56] and 31 [9-52], respectively, (p = 0.69) and P-MPW: 34 [17-58] and 36 [16-62], respectively (p = 0.96), and for aerobic results (mean ± standard error) P-VO2 (75.9 ± 1.3% and 75.0 ± 1.3%, respectively) (p = 0.83). When comparing extreme tertiles, a difference was found for P-MPW in the lower tertile only, with a slight advantage of AD over NAD- 9 [5-16] versus 4 [1-11] (p = 0.04). Conclusion: Although awareness of the pre-participation levels of aerobic and non-aerobic physical fitness components is useful for individualized exercise prescription, these variables do not seem to influence medium-term adherence to SEP

    Cardiorespiratory Optimal Point in Professional Soccer Players: A Novel Submaximal Variable During Exercise

    No full text
    <div><p>Abstract Background: Maximal oxygen consumption (VO2max) and ventilatory threshold (VT) obtained during a cardiopulmonary exercise test (CPX) are used in the evaluation of athletes. However, the identification of these variables may sometimes be unreliable, which limits their use. In contrast, the cardiorespiratory optimal point (COP) is a submaximal variable derived from CPX with objective measurement and prognostic significance. However, its behavior in athletes is unknown. Objective: To describe the behavior of COP in professional soccer players and its association with VO2max and VT. Methods: VO2max, VT and COP were obtained retrospectively from 198 soccer players undergoing maximal treadmill CPX using ramp protocol. COP was defined as the lowest value of the ventilation/oxygen consumption ratio in a given minute of the CPX. The soccer players were stratified according to their field position: goalkeeper, center-defender, left/right-back, midfielder and forwarder. Continuous variables were compared using unpaired Student t test or ANOVA, or Mann-Whitney test or Kruskal-Wallis test depending on their distribution, and categorical variables were compared using chi-square test. Pearson correlation was used to test the association between COP and other ventilatory variables. A level of 5% was used for statistical significance. Results: COP (mean ± SD) was 18.2 ± 2.1 and was achieved at a speed 4.3 ± 1.4 km.h-1 lower than that achieved at the VT. While VO2max (62.1 ± 6.2 mL.kg-1.min-1) tended to be lower in goalkeepers (p < 0.05), the COP did not vary according to field position (p = 0.41). No significant association was observed between COP and VO2max (r = 0.032, p = 0.65) or between COP and VT (r = -0.003, p = 0.96). Conclusion: COP can be easily determined during submaximal exercise performed with incremental speed in soccer players and does not vary according to the athlete’s field position. The absence of association with VO2max and VT indicates that COP provides distinct and complementary information to these variables. Future studies are needed to determine the practical implications of COP in assessing athletes. (Int J Cardiovasc Sci. 2018; [online].ahead print, PP.0-0)</p></div

    Cardiorespiratory Optimal Point in Professional Soccer Players: A Novel Submaximal Variable During Exercise

    No full text
    <div><p>Abstract Background: Maximal oxygen consumption (VO2max) and ventilatory threshold (VT) obtained during a cardiopulmonary exercise test (CPX) are used in the evaluation of athletes. However, the identification of these variables may sometimes be unreliable, which limits their use. In contrast, the cardiorespiratory optimal point (COP) is a submaximal variable derived from CPX with objective measurement and prognostic significance. However, its behavior in athletes is unknown. Objective: To describe the behavior of COP in professional soccer players and its association with VO2max and VT. Methods: VO2max, VT and COP were obtained retrospectively from 198 soccer players undergoing maximal treadmill CPX using ramp protocol. COP was defined as the lowest value of the ventilation/oxygen consumption ratio in a given minute of the CPX. The soccer players were stratified according to their field position: goalkeeper, center-defender, left/right-back, midfielder and forwarder. Continuous variables were compared using unpaired Student t test or ANOVA, or Mann-Whitney test or Kruskal-Wallis test depending on their distribution, and categorical variables were compared using chi-square test. Pearson correlation was used to test the association between COP and other ventilatory variables. A level of 5% was used for statistical significance. Results: COP (mean ± SD) was 18.2 ± 2.1 and was achieved at a speed 4.3 ± 1.4 km.h-1 lower than that achieved at the VT. While VO2max (62.1 ± 6.2 mL.kg-1.min-1) tended to be lower in goalkeepers (p < 0.05), the COP did not vary according to field position (p = 0.41). No significant association was observed between COP and VO2max (r = 0.032, p = 0.65) or between COP and VT (r = -0.003, p = 0.96). Conclusion: COP can be easily determined during submaximal exercise performed with incremental speed in soccer players and does not vary according to the athlete’s field position. The absence of association with VO2max and VT indicates that COP provides distinct and complementary information to these variables. Future studies are needed to determine the practical implications of COP in assessing athletes. (Int J Cardiovasc Sci. 2018; [online].ahead print, PP.0-0)</p></div

    Plasma protein patterns as comprehensive indicators of health

    No full text
    Proteins are effector molecules that mediate the functions of genes1,2 and modulate comorbidities3,4,5,6,7,8,9,10, behaviors and drug treatments11. They represent an enormous potential resource for personalized, systemic and data-driven diagnosis, prevention, monitoring and treatment. However, the concept of using plasma proteins for individualized health assessment across many health conditions simultaneously has not been tested. Here, we show that plasma protein expression patterns strongly encode for multiple different health states, future disease risks and lifestyle behaviors. We developed and validated protein-phenotype models for 11 different health indicators: liver fat, kidney filtration, percentage body fat, visceral fat mass, lean body mass, cardiopulmonary fitness, physical activity, alcohol consumption, cigarette smoking, diabetes risk and primary cardiovascular event risk. The analyses were prospectively planned, documented and executed at scale on archived samples and clinical data, with a total of ~85 million protein measurements in 16,894 participants. Our proof-of-concept study demonstrates that protein expression patterns reliably encode for many different health issues, and that large-scale protein scanning12,13,14,15,16 coupled with machine learning is viable for the development and future simultaneous delivery of multiple measures of health. We anticipate that, with further validation and the addition of more protein-phenotype models, this approach could enable a single-source, individualized so-called liquid health check
    corecore