200 research outputs found

    Quantifying Electron Correlation of the Chemical Bond

    Get PDF
    The Interacting Quantum Atoms (IQA) method is used to analyze the correlated part of the Møller–Plesset (MP) perturbation theory two-particle density matrix. Such an analysis determines the effects of electron correlation within atoms and between atoms, which covers both bonds and nonbonded through-space atom–atom interactions within a molecule or molecular complex. Electron correlation lowers the energy of the atoms at either end of a bond, but for the bond itself, it can be stabilizing or destabilizing. Bonds are described in a two-dimensional world of exchange and charge transfer, where covalency is not the opposite of ionicity

    Dynamic Atomic Contributions To Infrared Intensities Of Fundamental Bands.

    Get PDF
    Dynamic atomic intensity contributions to fundamental infrared intensities are defined as the scalar products of dipole moment derivative vectors for atomic displacements and the total dipole derivative vector of the normal mode. Intensities of functional group vibrations of the fluorochloromethanes can be estimated within 6.5 km mol(-1) by displacing only the functional group atoms rather than all the atoms in the molecules. The asymmetric CF2 stretching intensity, calculated to be 126.5 km mol(-1) higher than the symmetric one, is accounted for by an 81.7 km mol(-1) difference owing to the carbon atom displacement and 40.6 km mol(-1) for both fluorine displacements. Within the Quantum Theory of Atoms in Molecules (QTAIM) model differences in atomic polarizations are found to be the most important for explaining the difference in these carbon dynamic intensity contributions. Carbon atom displacements almost completely account for the differences in the symmetric and asymmetric CCl2 stretching intensities of dichloromethane, 103.9 of the total calculated value of 105.2 km mol(-1). Contrary to that found for the CF2 vibrations intramolecular charge transfer provoked by the carbon atom displacement almost exclusively explains this difference. The very similar intensity values of the symmetric and asymmetric CH2 stretching intensities in CH2F2 arise from nearly equal carbon and hydrogen atom contributions for these vibrations. All atomic contributions to the intensities for these vibrations in CH2Cl2 are very small. Sums of dynamic contributions of the individual intensities for all vibrational modes of the molecule are shown to be equal to mass weighted atomic effective charges that can be determined from atomic polar tensors evaluated from experimental infrared intensities and frequencies. Dynamic contributions for individual intensities can also be determined solely from experimental data.1730378-3038

    Review of experimental GAPT and infrared atomic charges in molecules

    Get PDF
    This review contains experimental values of polar tensors and generalized atomic polar tensor (GAPT) charges determined since the publication of the polar tensor formulism for infrared intensity interpretation in 1961. GAPT charges, also called mean dipole moment derivatives, for 167 atoms of 67 molecules are discussed and compared with infrared charges also determined completely from experimental intensities. The importance of the charge transfer and polarization dynamic contributions to the GAPT charge are emphasized as they differentiate this charge from most theoretically calculated charges. The inclusion of these dynamic contributions is shown to be necessary to provide adequate numerical descriptions of core electron ionization energy processes. These contributions are expected to be important in studies of chemical reactivity276979991CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP140711/2013-9Sem informação2014/21241-9; 09/09678-

    Atomic Charge Transfer-counter Polarization Effects Determine Infrared Ch Intensities Of Hydrocarbons: A Quantum Theory Of Atoms In Molecules Model.

    Get PDF
    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.1623224-3

    Build-Up an Economical Tool for Machining Operations Cost Estimation

    Get PDF
    Currently, there is a lack of affordable and simple tools for the estimation of these costs, especially for machining operations. This is particularly true for manufacturing SMEs, in which the cost estimation of machined parts is usually performed based only on required material for part production, or involves a time-consuming, non-standardized technical analysis. Therefore, a cost estimation tool was developed, based on the calculated machining times and amount of required material, based on the final drawing of the requested workpiece. The tool was developed primarily for milling machines, considering milling, drilling, and boring/threading operations. Regarding the considered materials, these were primarily aluminum alloys. However, some polymer materials were also considered. The tool first estimates the required time for total part production and then calculates the total cost. The total production time is estimated based on the required machining operations, as well as drawing, programming, and machine setup time. A part complexity level was also introduced, based on the number of details and operations required for each workpiece, which will inflate the estimated times. The estimation tool was tested in a company setting, comparing the estimated operation time values with the real ones, for a wide variety of parts of differing complexity. An average error of 14% for machining operation times was registered, which is quite satisfactory, as this time is the most impactful in terms of machining cost. However, there are still some problems regarding the accuracy in estimating finishing operation timesinfo:eu-repo/semantics/publishedVersio

    Quantum Theory Of Atoms In Molecules/charge-charge Flux-dipole Flux Models For Fundamental Vibrational Intensity Changes On H-bond Formation Of Water And Hydrogen Fluoride.

    Get PDF
    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol(-1) on H-bond formation compared with the experimental values of 141 and 53 km mol(-1). The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C2v axis. The largest calculated increase of 107 km mol(-1) is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol(-1) total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol(-1) on HF dimerization and 592 km mol(-1) on HF:H2O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone explain 145, 237, and 574 km mol(-1) of the H-bond stretching intensity enhancements for the water and HF dimers and their heterodimer compared with total increments of 149, 321, and 592 km mol(-1), respectively.14008430

    O valor do suporte à parturiente: um estudo da relação interpessoal no contexto de um Centro de Parto Normal

    Get PDF
    Uma importante questão que vem sendo apontada nos estudos sobre as práticas assistenciais em saúde é a que se refere à influência considerável da dimensão relacional na qualidade dos cuidados prestados. O suporte emocional e social no ciclo gravidez-puerpério, especialmente durante o trabalho de parto e parto, tem sido valorizado em muitos estudos em diversos países, com diferentes modalidades de suporte institucional, como um fator importante na qualificação da assistência materna. Este artigo apresenta resultados e considerações sobre o tema do suporte com base em estudo realizado em maternidade de São Paulo, em 2004, utilizando metodologia qualitativa com entrevista semi-estruturada e observação de rotinas da instituição. O processamento dos dados valeu-se de categorias formuladas para análise, que mostrou a relevância das relações interpessoais no processo da parturição possibilitando apreender o espaço relacional como lugar privilegiado de interlocução marcada pela escuta e acolhimento da experiência vivida, podendo ser considerado entre aqueles recursos, de significativa importância, indicados como apropriados na assistência ao parto.An important question that has been emphasized in studies on health care practices is the considerable influence of the relational dimension on the quality of the care provided. Various studies carried out in many countries have been pointing out the high value of emotional and social support in the pregnancy-puerperium cycle, especially during the labor process and delivery, with different forms of institutional support. According to such studies, emotional and social support is an important factor in the quality of the maternal care provided. This article presents results and considerations related to the theme of supportive care based on a study conducted in a maternity of São Paulo, state of São Paulo, Brazil, in 2004, using a qualitative methodology with semi-structured interviews and observation of routine activities of the institution. Data processing was based on categories especially built for analysis. The analysis showed the relevance of interpersonal relationships in the childbirth process. This has enabled us to apprehend the relational space as a privileged place for interlocution, marked by listening and acceptance of the experience the women are going through. This relational space may be considered of the utmost relevance, among other resources indicated as appropriate in delivery care

    Using an Artificial Neural Network Approach to Predict Machining Time

    Get PDF
    One of the most critical factors in producing plastic injection molds is the cost estimation of machining services, which significantly affects the final mold price. These services’ costs are determined according to the machining time, which is usually a long and expensive operation. If it is considered that the injection mold parts are all different, it can be understood that the correct and quick estimation of machining times is of great importance for a company’s success. This article presents a proposal to apply artificial neural networks in machining time estimation for standard injection mold parts. For this purpose, a large set of parts was considered to shape the artificial intelligence model, and machining times were calculated to collect enough data for training the neural networks. The influences of the network architecture, input data, and the variables used in the network’s training were studied to find the neural network with greatest prediction accuracy. The application of neural networks in this work proved to be a quick and efficient way to predict cutting times with a percent error of 2.52% in the best case. The present work can strongly contribute to the research in this and similar sectors, as recent research does not usually focus on the direct prediction of machining times relating to overall production cost. This tool can be used in a quick and efficient manner to obtain information on the total machining cost of mold parts, with the possibility of being applied to other industry sectorsinfo:eu-repo/semantics/publishedVersio
    corecore