313 research outputs found

    Road verge vegetation and the capture of particulate matter air pollution

    Get PDF
    Urban air quality is considered a major issue in cities worldwide, with particulate matter (PM) recognised as one of the most harmful pollutants regarding human health. The use of plants to act as air filters and immobilise PM has been identified as a potential method to improve the air quality in these areas. The majority of the work has focused on trees, with the application of shrub and herbaceous species largely overlooked. Two contrasting leaf morphologies from a shrub and herbaceous plant species were sampled at four locations across Southampton (UK), from varying traffic conditions. Samples were analysed for the mass of PM captured, particle size, and elemental composition. These analyses were used to characterise the different sites and the plants’ effectiveness at immobilisation of PM. Captured PM mass was shown to be directly related to traffic density, with greater traffic density leading to higher levels of captured PM. PM origins were attributed to emissions from vehicles and the resuspension of particles by vehicle movement. The bulk of the PM mass was shown to originate from natural, crustal sources including large proportions of Al, Si, and/or Ca. Increases in elements from anthropogenic enhancement (such as Fe and Zn) were related to high traffic density. Particle size analysis identified that, despite the use of standard leaf-washing protocols with a final 2.5 µm filter, PM was dominated by fine particles (<2.5 µm physical diameter), with particles >10 µm rare. Bramble leaves were calculated to have a species-specific deposition velocity 0.51 cm s−1 greater than ivy, with deposition velocities calculated at 1.8 and 1.3 cm s−1 for ivy and 2.3 and 1.8 cm s−1 for bramble at Redbridge Road and Brinton’s Road, respectively. These values can allow for the more accurate modelling and estimation of the PM removal abilities of these plants

    A study into the effects of gas flow inlet design of the Renishaw AM250 laser powder bed fusion machine using computational modelling

    Get PDF
    Previous work has highlighted the importance of the gas flow system in laser powder bed fusion (L-PBF) processes. Inhomogeneous gas flow experienced at the surface of the powder bed can cause variations in mechanical properties over a build platform, where insufficient removal of by-products which cause laser attenuation and redisposition of byproducts are believed to contribute to these variations. The current study analyses the gas flow experienced over a build platform in a Renishaw AM250 metal powder bed fusion machine via Hot Wire Anemometer (HWA) testing. Velocity profiles of the flow directly above the powder-bed and through the centre plane normal to the inlets have been categorized. These HWA results illustrate the inhomogeneity of the gas flow experienced over the build platform and from literature imply that there will be insufficient removal of by-products and hence variable build quality in specific areas of the build platform. A Computational Fluid Dynamics (CFD) model was created in ANSYS Fluent and validated against HWA results coupled with a Discrete Phase Model (DPM) representing the expulsion of spatter. Velocity contours of simulated against experimental are compared, where the results appear in good agreement. The multiphase CFD model was then used to explore the effects of changing inlet design parameters using a Design of Experiments (DOE) study based on an Optimal Space Filling (OSF) method. This was to understand the effect of design parameters on flow uniformity, local gas velocity over the processing area and spatter particulate accumulation within the build chamber. The initial design study found that flow uniformity could potentially be increased by 21.05% and spatter accumulation on the processing area could be reduced by 26.64%. In addition, this has given insight into important design considerations for future generation of L-PBF machines

    Signs of low frequency dispersions in disordered binary dielectric mixtures (50-50)

    Full text link
    Dielectric relaxation in disordered dielectric mixtures are presented by emphasizing the interfacial polarization. The obtained results coincide with and cause confusion with those of the low frequency dispersion behavior. The considered systems are composed of two phases on two-dimensional square and triangular topological networks. We use the finite element method to calculate the effective dielectric permittivities of randomly generated structures. The dielectric relaxation phenomena together with the dielectric permittivity values at constant frequencies are investigated, and significant differences of the square and triangular topologies are observed. The frequency dependent properties of some of the generated structures are examined. We conclude that the topological disorder may lead to the normal or anomalous low frequency dispersion if the electrical properties of the phases are chosen properly, such that for ``slightly'' {\em reciprocal mixture}--when σ1σ2\sigma_1\gg\sigma_2, and ϵ1<ϵ2\epsilon_1<\epsilon_2--normal, and while for ``extreme'' {\em reciprocal mixture}--when σ1σ2\sigma_1\gg\sigma_2, and ϵ1ϵ2\epsilon_1\ll\epsilon_2--anomalous low frequency dispersions are obtained. Finally, comparison with experimental data indicates that one can obtain valuable information from simulations when the material properties of the constituents are not available and of importance.Comment: 13 pages, 7 figure

    The three-prong method: a novel assessment of residual stress in laser powder bed fusion

    Get PDF
    Residual stress is a major problem for most metal-based laser powder bed fusion (L-PBF) components. Residual stress can be reduced by appropriate build planning and post-process heat treatments; however, it is not always avoidable and can lead to build failures due to distortion and cracking. Accurate measurement of residual stress levels can be difficult due to high equipment set-up costs and long processing times. This paper introduces a simple but novel method of measuring residual stresses via a three-pronged cantilever component, the three-prong method (TPM). The method allows for a quick and easy characterisation of residual stress for a wide range of machine parameters, build strategies and materials. Many different cantilever designs have been used to indicate residual stress within additive manufacturing techniques. All of which share the same shortcoming that they indicate stress in one direction. If the principal component of stress is not aligned with the beam geometry, it will underestimate peak stress values. A novel three-prong design is proposed which covers two dimensions by utilising three adjoined cantilever beams, a configuration which echoes that of hole-drilling where three measurements are used to calculate the stress field around a drilled hole. Each arm of the component resembles a curved bridge-like structure; one end of each bridge is cut away from the base plate leaving the centre intact. Deformation of the beams is then measured using a co-ordinate measurement machine. Stress profiles are then estimated using finite element analysis by meshing the deflected structure and forcing it back to its original shape. In this paper, the new TPM is used to compare the residual stress levels of components built in Ti–6Al–4V with different hatch patterns, powers and exposure times

    Dielectric spectra analysis: reliable parameter estimation using interval analysis

    Get PDF
    Dielectric spectroscopy is an extremely versatile method for characterizing the molecular dynamics over a large range of time scales. Unfortunately, the extraction of model parameters by data fitting is still a crucial problem which is now solved by our program S.A.D.E. S.A.D.E. is based on the algorithm S.I.V.I.A. which was proposed and implemented by Jaulin in order to solve constraint satisfaction problems. The problem of dielectric data analysis is reduced to a problem of choosing the appropriate physical model. In this article, Debye relaxations were used and validated to fit the relaxations of a DGEBA prepolymer and the polarization of the spectrometer electrodes. The conductivity was evaluated too

    On micro-structural effects in dielectric mixtures

    Full text link
    The paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites on eleven regular space filling tessellations. First, significant contributions of different parameters, which play an important role in the electrical properties of the composite, are introduced both for designing and analyzing material mixtures. Later, influence of structural differences and intrinsic electrical properties of constituents on the composite's over all electrical properties are investigated. The structural differences are resolved by the spectral density representation approach. The numerical technique, without any {\em a-priori} assumptions, for extracting the spectral density function is also presented.Comment: 24 pages, 8 figure and 7 tables. It is submitted to IEEE Transactions on Dielectrics and Electrical Insulatio

    Silicon carbide particulates incorporated into microalloyed steel surface using TIG: microstructure and properties

    Get PDF
    Surface metal matrix composites have been developed to enhance properties such as erosion, wear and corrosion of alloys. In this study, ~5 µm or ~75 µm SiC particulates were preplaced on a microalloyed steel. Single track surface zones were melted by a tungsten inert gas torch, and the effect of two heat inputs, 420Jmm-1 and 840 Jmm-1,compared. The results showed that the samples melted using 420Jmm-1 were crack-free. Pin-on-disk wear testing under dry sliding conditions were conducted. The effects of load and sliding velocity were used to characterise the performance of the crack-free samples. Microstructural and X-ray diffraction studies of the surface showed that the SiC had dissolved, and that martensite, was the main phase influencing the hardness

    Ionic liquid based EDLCs: influence of carbon porosity on electrochemical performance

    Get PDF
    Electrochemical double layer capacitors (EDLCs) are a category of supercapacitors; devices that store charge at the interface between electrodes and an electrolyte. Currently available commercial devices have a limited operating potential that restricts their energy and power densities. Ionic liquids (ILs) are a promising alternative electrolyte as they generally exhibit greater electrochemical stabilities and lower volatility. This work investigates the electrochemical performance of EDLCs using ILs that combine the bis(trifluoromethanesulfonyl)imide anion with sulfonium and ammonium based cations. Different activated carbon materials were employed to also investigate the influence of varying pore size on electrochemical performance. Electrochemical impedance spectroscopy (EIS) and constant current cycling at different rates were used to assess resistance and specific capacitance. In general, greater specific capacitances and lower resistances were found with the sulfonium based ILs studied, and this was attributed to their smaller cation volume. Comparing electrochemical stabilities indicated that significantly higher operating potentials are possible with the ammonium based ILs. The marginally smaller sulfonium cation performed better with the carbon exhibiting the largest pore width, whereas peak performance of the larger sulfonium cation was associated with a narrower pore size. Considerable differences between the performance of the ammonium based ILs were observed and attributed to differences not only in cation size but also due to the inclusion of a methoxyethyl group. The improved performance of the ether bond containing IL was ascribed to electron donation from the oxygen atom influencing the charge density of the cation and facilitating cation–cation interactions

    A pragmatic continuum level model for the prediction of the onset of keyholing in laser powder bed fusion

    Get PDF
    Laser powder bed fusion (L-PBF) is a complex process involving a range of multi-scale and multi-physical phenomena. There has been much research involved in creating numerical models of this process using both high and low fidelity modelling approaches where various approximations are made. Generally, to model single lines within the process to predict melt pool geometry and mode, high fidelity computationally intensive models are used which, for industrial purposes, may not be suitable. The model proposed in this work uses a pragmatic continuum level methodology with an ablation limiting approach at the mesoscale coupled with measured thermophysical properties. This model is compared with single line experiments over a range of input parameters using a modulated yttrium fibre laser with varying power and line speeds for a fixed powder layer thickness. A good trend is found between the predicted and measured width and depth of the tracks for 316L stainless steel where the transition into keyhole mode welds was predicted within 13% of experiments. The work presented highlights that pragmatic reduced physics-based modelling can accurately capture weld geometry which could be applied to more practical based uses in the L-PBF process
    corecore