850 research outputs found

    Adherence to host extracellular matrix and serum components by Enterococcus faecium isolates of diverse origin.

    Get PDF
    Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I (CI) as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm-mediated CI adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (Fn) (20% of the 60 isolates), fibrinogen (17%) and laminin (Ln) (13%), while only one or two of the isolates adhered to collagen type V (CV), transferrin or lactoferrin and none to the other host components tested. Adherence to Fn and Ln was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to Fn and Ln, in addition to CI, may have contributed to the emergence and adaptation of E. faecium, in particular CC17, as a nosocomial pathogen

    Comparison of the levels of organic, elemental and inorganic carbon in particulate matter in six urban environments in Europe

    No full text
    International audienceA series of 7-week sampling campaigns were conducted in urban background sites in the six European cities as follows: Duisburg 4 October?21 November 2002 (autumn), Prague 29 November 2002?16 January 2003 (winter), Amsterdam 24 January?13 March 2003 (winter), Helsinki 21 March?12 May 2003 (spring), Barcelona 28 March?19 May 2003 (spring) and Athens 2 June?21 July 2003 (summer). The campaigns were scheduled to include seasons of local public health concern due to high PM concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors (VI), which divide air PM into two size fractions, PM2.5 and PM2.5-10. The filter samples were analysed with a microbalance, an energy dispersive X-ray fluorescence (ED-XRF), an ion chromatograph (IC) and a thermo-optical carbon analyser (TOA). The PM2.5 and PM2.5-10 campaign means ranged 8.3?29.6 µg m-3 and 5.4?28.7 µg m-3, respectively. The ''wet and cool'' seasons favoured low coarse PM concentration and high fine PM concentration, whereas the spring and summer led to low fine and high coarse PM concentrations. The contribution of particulate organic matter (POM) to PM2.5-10 was highest (27%) in Prague and the lowest (10%) in Barcelona, while those to PM2.5 were generally higher, ranging from 21% in Barcelona to 54% in Prague. The contribution of elemental carbon (EC) to PM2.5-10 were relatively low (1?6%) in all the six European cities but it contributed somewhat higher (5?9%) to PM2.5. The differences are most likely due to variable contributions of local emission sources and seasonal factors such as domestic heating, vehicle exhausts and photochemical reactions. Carbonate, which interferes with carbon analysis by evolving stage at 900°C, was detected in the coarse particles of Athens and Barcelona and it could be separated reliably from OC by a simple integrating method. The calcium carbonate in Athens and Barcelona accounted for 56% and 11% of coarse PM masses, respectively. Carbonate was not found in other cities or in PM2.5. The mean PM2.5 mass portions of five OC thermal fractions (OC1, OC2, OC3, OC4 and OCP) varied in the range 26?33%, 6?10%, 7?10%, 9?22% and 29?50%, respectively, in six cities. The differences in the mass portion profiles were relatively small between the cities

    Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Get PDF
    International audienceA series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn), Prague (winter), Amsterdam (winter), Helsinki (spring), Barcelona (spring) and Athens (summer). The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5) and coarse (PM2.5-10) size ranges. From the collected filter samples, elemental (EC) and organic (OC) carbon contents were analysed with a thermal-optical carbon analyser (TOA); total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF); As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS); Ca2+, succinate, malonate and oxalate by ion chromatography (IC); and the sum of levoglucosan+galactosan+mannosan (?MA) by liquid chromatography mass spectrometry (LC/MS). The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM) to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9%) than to PM2.5-10 (1-6%) in all the six campaigns. Carbonate (C(CO3), that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested also interesting differences in source dominance during the campaign periods: Prague (biomass and coal combustion), Barcelona (fuel oil combustion, secondary photochemical organics) and Athens (secondary photochemical organics). The on-going toxicological studies will clarify the health significance of these findings

    Measuring the spin of the primary black hole in OJ287

    Full text link
    The compact binary system in OJ287 is modelled to contain a spinning primary black hole with an accretion disk and a non-spinning secondary black hole. Using Post Newtonian (PN) accurate equations that include 2.5PN accurate non-spinning contributions, the leading order general relativistic and classical spin-orbit terms, the orbit of the binary black hole in OJ287 is calculated and as expected it depends on the spin of the primary black hole. Using the orbital solution, the specific times when the orbit of the secondary crosses the accretion disk of the primary are evaluated such that the record of observed outbursts from 1913 up to 2007 is reproduced. The timings of the outbursts are quite sensitive to the spin value. In order to reproduce all the known outbursts, including a newly discovered one in 1957, the Kerr parameter of the primary has to be 0.28±0.080.28 \pm 0.08. The quadrupole-moment contributions to the equations of motion allow us to constrain the `no-hair' parameter to be 1.0±0.31.0\:\pm\:0.3 where 0.3 is the one sigma error. This supports the `black hole no-hair theorem' within the achievable precision. It should be possible to test the present estimate in 2015 when the next outburst is due. The timing of the 2015 outburst is a strong function of the spin: if the spin is 0.36 of the maximal value allowed in general relativity, the outburst begins in early November 2015, while the same event starts in the end of January 2016 if the spin is 0.2Comment: 12 pages, 6 figure

    Observation of shot-noise-induced asymmetry in the Coulomb blockaded Josephson junction

    Get PDF
    We have investigated the influence of shot noise on the IV-curves of a single mesoscopic Josephson junction. We observe a linear enhancement of zero-bias conductance of the Josephson junction with increasing shot noise power. Moreover, the IV-curves become increasingly asymmetric. Our analysis on the asymmetry shows that the Coulomb blockade of Cooper pairs is strongly influenced by the non-Gaussian character of the shot noise.Comment: 4 pages, 5 figures, RevTE

    Enhancing Optomechanical Coupling via the Josephson Effect

    Get PDF
    Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, the smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor can be exploited to arrange a strong radiation-pressure-type coupling g0 between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high g0. Contrary to the recent proposals for exploiting the nonlinearity of a large radiation-pressure coupling, the main nonlinearity in this setup originates from a cross-Kerr type of coupling between the resonators, where the cavity refractive index depends on the phonon number. The presence of this coupling will allow accessing the individual phonon numbers via the measurement of the cavity.Peer reviewe

    Inverse proximity effect in superconductors near ferromagnetic material

    Full text link
    We study the electronic density of states in a mesoscopic superconductor near a transparent interface with a ferromagnetic metal. In our tunnel spectroscopy experiment, a substantial density of states is observed at sub-gap energies close to a ferromagnet. We compare our data with detailed calculations based on the Usadel equation, where the effect of the ferromagnet is treated as an effective boundary condition. We achieve an excellent agreement with theory when non-ideal quality of the interface is taken into account.Comment: revised, 7 pages, 3 figure

    Ionospheric conductances derived from satellite measurements of auroral UV and X-ray emissions, and ground-based electromagnetic data: a comparison

    No full text
    International audienceGlobal instantaneous conductance maps can be derived from remote sensing of UV and X-ray emissions by the UVI and PIXIE cameras on board the Polar satellite. Another technique called the 1-D method of characteristics provides mesoscale instantaneous conductance profiles from the MIRACLE ground-based network in Northern Scandinavia, using electric field measurements from the STARE coherent scatter radar and ground magnetometer data from the IMAGE network. The method based on UVI and PIXIE data gives conductance maps with a resolution of ~800km in space and ~4.5min in time, while the 1-D method of characteristics establishes conductances every 20s and with a spatial resolution of ~50km. In this study, we examine three periods with substorm activity in 1998 to investigate whether the two techniques converge when the results from the 1-D method of characteristics are averaged over the spatial and temporal resolution of the UVI/PIXIE data. In general, we find that the calculated conductance sets do not correlate. However, a fairly good agreement may be reached when the ionosphere is in a state that does not exhibit strong local turbulence. By defining a certain tolerance level of turbulence, we show that 14 of the 15 calculated conductance pairs during relatively uniform ionospheric conditions differ less than ±30%. The same is true for only 4 of the 9 data points derived when the ionosphere is in a highly turbulent state. A correlation coefficient between the two conductance sets of 0.27 is derived when all the measurements are included. By removing the data points from time periods when too much ionospheric turbulence occurs, the correlation coefficient raises to 0.57. Considering the two very different techniques used in this study to derive the conductances, with different assumptions, limitations and scale sizes, our results indicate that simple averaging of mesoscale results allows a continuous transition to large-scale results. Therefore, it is possible to use a combined approach to study ionospheric events with satellite optical and ground-based electrodynamic data of different spatial and temporal resolutions. We must be careful, though, when using these two techniques during disturbed conditions. The two methods will only give results that systematically converge when relatively uniform conditions exist

    Optical and radio variability of the BL Lac object AO 0235+16: a possible 5-6 year periodicity

    Full text link
    New optical and radio data on the BL Lacertae object AO 0235+16 have been collected in the last four years by a wide international collaboration, which confirm the intense activity of this source. The optical data also include the results of the Whole Earth Blazar Telescope (WEBT) first-light campaign organized in November 1997. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection, Discrete Correlation Function analysis, and Discrete Fourier Transform technique. The major radio outbursts are found to repeat quasi-regularly with a periodicity of about 5.7 years; this period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them.Comment: to be published in A&
    corecore