531 research outputs found

    A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis.

    Get PDF
    Biological nitrogen fixation, with an emphasis on the legume-rhizobia symbiosis, is a key process for agriculture and the environment, allowing the replacement of nitrogen fertilizers, reducing water pollution by nitrate as well as emission of greenhouse gases. Soils contain numerous strains belonging to the bacterial genus Bradyrhizobium, which establish symbioses with a variety of legumes. However, due to the high conservation of Bradyrhizobium 16S rRNA genes - considered as the backbone of the taxonomy of prokaryotes - few species have been delineated. The multilocus sequence analysis (MLSA) methodology, which includes analysis of housekeeping genes, has been shown to be promising and powerful for defining bacterial species, and, in this study, it was applied to Bradyrhizobium, species, increasing our understanding of the diversity of nitrogen-fixing bacteria. Description: Classification of bacteria of agronomic importance is relevant to biodiversity, as well as to biotechnological manipulation to improve agricultural productivity. We propose the construction of an online database that will provide information and tools using MLSA to improve phylogenetic and taxonomic characterization of Bradyrhizobium, allowing the comparison of genomic sequences with those of type and representative strains of each species. Conclusion: A database for the taxonomic and phylogenetic identification of the Bradyrhizobium, genus, using MLSA, will facilitate the use of biological data available through an intuitive web interface. Sequences stored in the on-line database can be compared with multiple sequences of other strains with simplicity and agility through multiple alignment algorithms and computational routines integrated into the database. The proposed database and software tools are available at http://mlsa.cnpso.embrapa.br, and can be used, free of charge, by researchers worldwide to classify Bradyrhizobium, strains; the database and software can be applied to replicate the experiments presented in this study as well as to generate new experiments. The next step will be expansion of the database to include other rhizobial species.Edição dos Proceedings of the 10th International Conference of the Brazilian Association for Bioinformatics and Computational Biology (X-Meeting 2014), Belo Horizonte, Oct. 2014

    A quantum mechanics-molecular mechanics study of dissociative electron transfer : The methylchloride radical anion in aqueous solution

    Get PDF
    The dissociative electron transfer reaction CH3Cl+e−→CH3•+Cl− in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon–chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Marcus’ relationship, originally developed for electron transfer processes not involving bond breaking. We also investigated dynamical aspects by means of 60 dissociative trajectories started with the addition of an extra electron to different configurations of a methylchloride molecule in solution. The PMF shows the existence of a very flat region, in which the system is trapped during some finite time if the quantum subsystem quickly losses its excess kinetic energy transferring it to the solvent molecules. One of the most important factors determining the effectiveness of this energy transfer seems to be the existence of close contacts (hydrogen bonds) between the solute and the [email protected] [email protected]

    Conformational analysis of 2,2-difluoroethylamine hydrochloride: double gauche effect

    Get PDF
    The gauche effect in fluorinated alkylammonium salts is well known and attributed either to an intramolecular hydrogen bond or to an electrostatic attraction between the positively charged nitrogen and the vicinal electronegative fluorine atom. This work reports the effect of adding a fluorine atom in 2-fluoroethylamine hydrochloride on the conformational isomerism of the resulting 2,2-difluoroethylamine chloride (2). The analysis was carried out using NMR coupling constants in D2O solution, in order to mimic the equilibrium conditions in a physiological medium, in the gas phase and in implicit water through theoretical calculations. Despite the presence of sigma(CH)->sigma(*)(CF) and sigma(CH)->sigma(*)(CN) interactions, which usually rule the hyperconjugative gauche effect in 1,2-disubstituted ethanes, the most important forces leading to the double gauche effect (+NH3 in the gauche relationship with both fluorine atoms) in 2 are the Lewis-type ones. Particularly, electrostatic interactions are operative even in water solution, where they should be significantly attenuated, whereas hyperconjugation and hydrogen bond have secondary importance10877882CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAIS - FAPEMIGFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2012/03933-5; 2011/11098-6; 2011/01170-

    INFOGRAPHIC MODELING BASED ON 3D LASER SURVEYING FOR INFORMED UNIVERSAL DESIGN IN ARCHAEOLOGICAL AREAS: THE CASE OF OPPIDUM OF THE ANCIENT CITY OF TUSCULUM

    Get PDF
    The valorisation of archaeological sites represents a fundamental action for the social and economic development of a country. An archaeological park is often a territory characterized by significant testimonies of antiquity of great landscape value. For this reason, it should be configured as an authentic outdoor museum, enriched by natural, environmental, architectural and urban components. In order to fulfill these requirements, it is fundamental the elaboration of a coherent scientific project of preservation, fruition and valorisation of the area, which merge the different components necessary for the establishment of an archaeological museum-park. One of the most critical aspects related to the fruition of archaeological sites is the accessibility to areas and routes, not always – if ever – designed for people with reduced mobility, also temporary (for example elderly, obese, visually impaired, etc.). In general, an established principle used in the new design is to pay attention to the so-called wide users, in accordance with the international guidelines summarized in the concept of Universal Design. In particular, this paper presents the use of three-dimensional models obtained from laser scanning surveys for the design of walking trails for people with reduced mobility in the Tusculum Archaeological-Cultural Park. The work was based on the fundamental implementation of the three-dimensional survey with terrestrial laser scanning for the construction and the control of the complex morphology of the site, and on the subsequent integration of models of the intervention in the three-dimensional reality "as-built" of the site. The obtained infographic model allowed to study and simulate the impact of the routes for people with reduced mobility, and to verify its efficiency in the historical and landscape context. Moreover, it was possible to verify the construction of other facilities in the real conditions of the site

    Abordagem computacional para a identificação de elementos cis-regulatórios no genoma da soja.

    Get PDF
    bitstream/item/71812/1/ID-30970.pd

    Abordagem computacional para a identificação de elementos cis-regulatóriso no genoma da soja.

    Get PDF
    bitstream/item/71511/1/ID-31371.pd

    Label-similarity Curriculum Learning

    Full text link
    Curriculum learning can improve neural network training by guiding the optimization to desirable optima. We propose a novel curriculum learning approach for image classification that adapts the loss function by changing the label representation. The idea is to use a probability distribution over classes as target label, where the class probabilities reflect the similarity to the true class. Gradually, this label representation is shifted towards the standard one-hot-encoding. That is, in the beginning minor mistakes are corrected less than large mistakes, resembling a teaching process in which broad concepts are explained first before subtle differences are taught. The class similarity can be based on prior knowledge. For the special case of the labels being natural words, we propose a generic way to automatically compute the similarities. The natural words are embedded into Euclidean space using a standard word embedding. The probability of each class is then a function of the cosine similarity between the vector representations of the class and the true label. The proposed label-similarity curriculum learning (LCL) approach was empirically evaluated using several popular deep learning architectures for image classification tasks applied to five datasets including ImageNet, CIFAR100, and AWA2. In all scenarios, LCL was able to improve the classification accuracy on the test data compared to standard training.Comment: Accepted as a conference paper at ECCV 202

    Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study

    Full text link
    [EN] Virtual Screening (VS) methods can considerably aid clinical research by predicting how ligands interact with pharmacological targets, thus accelerating the slow and critical process of finding new drugs. VS methods screen large databases of chemical compounds to find a candidate that interacts with a given target. The computational requirements of VS models, along with the size of the databases, containing up to millions of biological macromolecular structures, means computer clusters are a must. However, programming current clusters of computers is no easy task, as they have become heterogeneous and distributed systems where various programming models need to be used together to fully leverage their resources. This paper evaluates several strategies to provide peak performance to a GPU-based molecular docking application called METADOCK in heterogeneous clusters of computers based on CPU and NVIDIA Graphics Processing Units (GPUs). Our developments start with an OpenMP, MPI and CUDA METADOCK version as a baseline case of cluster utilization. Next, we explore the virtualized GPUs provided by the rCUDA framework in order to facilitate the programming process. rCUDA allows us to use remote GPUs, i.e. installed in other nodes of the cluster, as if they were installed in the local node, so enabling access to them using only OpenMP and CUDA. Finally, several load balancing strategies are analyzed in a search to enhance performance. Our results reveal that the use of middleware like rCUDA is a convincing alternative to leveraging heterogeneous clusters, as it offers even better performance than traditional approaches and also makes it easier to program these emerging clusters.This work is jointly supported by the Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) under grant 18946/JLI/13, and by the Spanish MEC and European Commission FEDER under grants TIN2015-66972-C5-3-R and TIN2016-78799-P (AEI/FEDER, UE). We also thank NVIDIA for hardware donation under GPU Educational Center 2014-2016 and Research Center 2015-2016. Furthermore, researchers from Universitat Politecnica de Valencia are supported by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support provided by Mellanox Technologies Inc.Imbernón, B.; Prades Gasulla, J.; Gimenez Canovas, D.; Cecilia, JM.; Silla Jiménez, F. (2018). Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study. Future Generation Computer Systems. 79:26-37. https://doi.org/10.1016/j.future.2017.08.050S26377
    corecore