29 research outputs found
NMR Spectroscopy in Bioinorganic Chemistry
Multinuclear and multidimensional nuclear magnetic resonance (NMR) spectroscopy is applied in our groups to gain insights into the role of metal ions for the function and structure of large biomolecules. Specifically, NMR is used i) to investigate how metal ions bind to nucleic acids
and thereby control the folding and structure of RNAs, ii) to characterize how metal ions are able to stabilize modified nucleic acids to be used as potential nanowires, and iii) to characterize the formation, structure, and role of the diverse metal clusters within plant metallothioneins.
In this review we summarize the various NMR experiments applied and the information obtained, demonstrating the important and fascinating part NMR spectroscopy plays in the field of bioinorganic chemistry
Agricultural practice and the effects of agricultural land-use on water quality
The intensification of agricultural land-use and changes in farming methods in conjunction with new industrial technologies has made it possible to increase food production and cultivate land previously considered as unsuitable. This article examines the detrimental effects of this intensification and considers agricultural practices (conservation tillage) which aim to protect soils from degradation. The effects of agricultural land-use on water quality are considered in relation to excessive nutrients, application of agrochemicals, sediment input and contamination by heavy metals. National and European policies for water and soil protection are discussed
Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages
Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g., the UAG stop-codon is reassigned to glutamine) while infecting hosts with the standard bacterial code. However, what triggers this switch and how the bacteriophage manipulates its host is poorly understood. Here, we report the discovery of a subgroup of minimal hepatitis delta virus (HDV)-like ribozymes - theta ribozymes - potentially involved in the code switch leading to the expression of recoded lysis and structural phage genes. We demonstrate their HDV-like self-scission behavior in vitro and find them in an unreported context often located with their cleavage site adjacent to tRNAs, indicating a role in viral tRNA maturation and/or regulation. Every fifth associated tRNA is a suppressor tRNA, further strengthening our hypothesis. The vast abundance of tRNA-associated theta ribozymes - we provide 1753 unique examples - highlights the importance of small ribozymes as an alternative to large enzymes that usually process tRNA 3'-ends. Our discovery expands the short list of biological functions of small HDV-like ribozymes and introduces a previously unknown player likely involved in the code switch of certain recoded gut bacteriophages
From Enigma to Revelation: Unravelling Biological Functions of Ubiquitous Small Ribozymes
RNA, widely recognized as an information-carrier molecule, is capable of catalyzing essential biological processes through ribozymes. Despite their ubiquity, specific functions in a biological context and phenotypes based on the ribozymes' activity are often unknown. Here, we present the discovery of a subgroup of minimal HDV-like ribozymes, which reside 3' to viral tRNAs and appear to cleave the 3'-trailers of viral premature tRNA transcripts. This proposed tRNA-processing function is unprecedented for any ribozymes, thus, we designate this subgroup as theta ribozymes. Most theta ribozymes were identified in Caudoviricetes bacteriophages, the main constituent (>90%) of the mammalian gut virome. Intriguingly, our findings further suggest the involvement of theta ribozymes in the transition of certain bacteriophages between distinct genetic codes, thus possibly contributing to the phage lysis trigger. Our discovery expands the limited repertoire of biological functions attributed to HDV-like ribozymes and provides insights into the fascinating world of RNA catalysis
Magnesium(II)-ATP Complexes in 1-Ethyl-3-Methylimidazolium Acetate Solutions Characterized by 31Mg β-Radiation-Detected NMR Spectroscopy
The complexation of MgII with adenosine 5′-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin-urn:x-wiley:14337851:media:anie202207137:anie202207137-math-0001 β-emitter 31Mg to study MgII-ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using β-radiation-detected nuclear magnetic resonance (β-NMR). We demonstrate that (nuclear) spin-polarized 31Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing. The evolution of the spectra with solute concentration indicates that the implanted 31Mg initially bind to the solvent acetate anions, whereafter they undergo dynamic exchange and form either a mono- (31Mg-ATP) or di-nuclear (31MgMg-ATP) complex. The chemical shift of 31Mg-ATP is observed up-field of 31MgMg-ATP, in accord with quantum chemical calculations. These observations constitute a crucial advance towards using β-NMR to probe chemistry and biochemistry in solution
Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes’ ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry
Organometallic Pillarplexes that bind DNA 4-way Holliday Junctions and Forks.
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination and repair) and are dynamic structures which adopt either open or closed conformations, with the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core giving them an ideal structure to interact with the central cavities of open DNA junctions. Combining experimental studies and MD simulations we show that an Au pillarplex can bind DNA 4-way junctions (Holliday junctions) in their open form, a binding mode not accessed by synthetic agents before. The Au pillarplexes can bind designed 3-way junctions too but their large size leads them to open up and expand that junction, disrupting the base pairing which manifests in an increase in hydrodynamic size and a lower junction thermal stability. At high loading they re-arrange both 4-way and 3-way junctions into Y-shaped DNA forks to increase the available junction-like binding sites. The structurally related Ag pillarplexes show similar DNA junction binding behaviour, but a lower solution stability. This pillarplex binding contrasts with (but complements) that of the metallo-supramolecular cylinders, which prefer 3-way junctions and we show can rearrange 4-way junctions into 3-way junction structures. The ability of pillarplexes to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures where they are key interconnecting components. Studies in human cells, confirm that the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction-binders into organometallic chemistry
Citizen science’s transformative impact on science, citizen empowerment and socio-political processes
Citizen science (CS) can foster transformative impact for science, citizen empowerment and socio-political processes. To unleash this impact, a clearer understanding of its current status and challenges for its development is needed. Using quantitative indicators developed in a collaborative stakeholder process, our study provides a comprehensive overview of the current status of CS in Germany, Austria and Switzerland. Our online survey with 340 responses focused on CS impact through (1) scientific practices, (2) participant learning and empowerment, and (3) socio-political processes. With regard to scientific impact, we found that data quality control is an established component of CS practice, while publication of CS data and results has not yet been achieved by all project coordinators (55%). Key benefits for citizen scientists were the experience of collective impact (“making a difference together with others”) as well as gaining new knowledge. For the citizen scientists’ learning outcomes, different forms of social learning, such as systematic feedback or personal mentoring, were essential. While the majority of respondents attributed an important value to CS for decision-making, only few were confident that CS data were indeed utilized as evidence by decision-makers. Based on these results, we recommend (1) that project coordinators and researchers strengthen scientific impact by fostering data management and publications, (2) that project coordinators and citizen scientists enhance participant impact by promoting social learning opportunities and (3) that project initiators and CS networks foster socio-political impact through early engagement with decision-makers and alignment with ongoing policy processes. In this way, CS can evolve its transformative impact