6 research outputs found

    Riboregulation in Pseudomonas aeruginosa

    Get PDF
    The opportunistic human pathogen Pseudomonas aeruginosa controls virulence, production of secondary metabolites, motility, biofilm formation, growth in anaerobic conditions, intracellular and intercellular signalling and the switch from an acute to a chronic mode of infection at the transcriptional and post-transcriptional levels by modulation of the Gac/Rsm system. Cell density-dependent signal accumulation and environmental stimulators such as pH changes and ion limitation activate the GacS/GacA two-component system which in turn triggers transcription of the small regulatory RNAs RsmY and RsmZ. These sRNAs sequester multiple copies of the RNA-binding protein RsmA, antagonising its function. The RsmA/CsrA proteins act as translational repressors by binding to the GGA-motifs in the untranslated region of target mRNAs and blocking ribosome binding. In this study, the biological function of RsmN, an RsmA homologue with a conserved RNA-binding pocket but a distinct protein folding, the predicted autoregulatory mechanism of RsmN, the nature of target transcripts of RsmN, and the cross-regulation between the two Rsm proteins were investigated. The positive control of proteolytic and elastinolytic activities and swarming motility by RsmN has been demonstrated using single and inducible double deletion mutants of rsmN. Furthermore, rsmN deletion increased microcolony formation during biofilm formation. Regulation by RsmN was most apparent in the absence of RsmA, when rsmN expression was induced via a multicopy plasmid and at temperatures lower than 37°C. The double deletion of rsmA and rsmN affected growth, diminished proteolytic and elastinolytic activities, triggered autolysis and led to the increased secretion of the type VI secretion system protein Hcp1. Moreover, the double deletion of rsmA and rsmN altered the colony morphology of P. aeruginosa. Mutagenesis of the functionally critical, conserved RNA-binding residue which is identified as Arg44 in RsmA and Arg62 in RsmN resulted in the loss of RsmN function. In a genome-wide analysis by RNASeq, target transcripts were co-purified with RsmN from 37°C and 34°C cultures of a wild-type strain expressing rsmN in multicopy numbers. RNASeq results indicated that small regulatory RNAs such as CrcZ, RsmY and RgsA are common targets of RsmN and RsmA, whereas PhrS is a target of RsmN only. Other common RsmA and RsmN targets included transcriptional regulators, heat shock proteins, proteases, starvation response proteins, components of the denitrification pathway, outer membrane proteins required for pore formation, type III and type VI secretion system proteins and RsmA. Transcripts of heat shock proteins, the tss operon genes and rsmA were enriched by RsmN at 37°C but not at 34°C whereas the lasB transcript was enriched by RsmN at 34°C but not at 37°C. Based on the list of common targets of RsmA and RsmN and the results obtained from phenotypic assays, induction of the lytic Pf4 prophage, accumulation of alkyl quinolone or c-di-GMP signalling molecules, imbalanced redox state, carbon starvation, increased membrane permeability, and aggregation of misfolded proteins are suggested as possible mechanisms triggering the excessive autolysis of the rsmNind ΔrsmA mutant under uninducing conditions. The data gathered so far suggests that rsmN is differentially expressed, with increased RsmN activity at temperatures below 37°C in comparison with RsmA, and, RsmA and RsmN collectively contribute to the regulation of secondary metabolite production, motility and microcolony formation in P. aeruginosa

    Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN

    Get PDF
    Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In P. aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues

    Riboregulation in Pseudomonas aeruginosa

    No full text
    The opportunistic human pathogen Pseudomonas aeruginosa controls virulence, production of secondary metabolites, motility, biofilm formation, growth in anaerobic conditions, intracellular and intercellular signalling and the switch from an acute to a chronic mode of infection at the transcriptional and post-transcriptional levels by modulation of the Gac/Rsm system. Cell density-dependent signal accumulation and environmental stimulators such as pH changes and ion limitation activate the GacS/GacA two-component system which in turn triggers transcription of the small regulatory RNAs RsmY and RsmZ. These sRNAs sequester multiple copies of the RNA-binding protein RsmA, antagonising its function. The RsmA/CsrA proteins act as translational repressors by binding to the GGA-motifs in the untranslated region of target mRNAs and blocking ribosome binding. In this study, the biological function of RsmN, an RsmA homologue with a conserved RNA-binding pocket but a distinct protein folding, the predicted autoregulatory mechanism of RsmN, the nature of target transcripts of RsmN, and the cross-regulation between the two Rsm proteins were investigated. The positive control of proteolytic and elastinolytic activities and swarming motility by RsmN has been demonstrated using single and inducible double deletion mutants of rsmN. Furthermore, rsmN deletion increased microcolony formation during biofilm formation. Regulation by RsmN was most apparent in the absence of RsmA, when rsmN expression was induced via a multicopy plasmid and at temperatures lower than 37°C. The double deletion of rsmA and rsmN affected growth, diminished proteolytic and elastinolytic activities, triggered autolysis and led to the increased secretion of the type VI secretion system protein Hcp1. Moreover, the double deletion of rsmA and rsmN altered the colony morphology of P. aeruginosa. Mutagenesis of the functionally critical, conserved RNA-binding residue which is identified as Arg44 in RsmA and Arg62 in RsmN resulted in the loss of RsmN function. In a genome-wide analysis by RNASeq, target transcripts were co-purified with RsmN from 37°C and 34°C cultures of a wild-type strain expressing rsmN in multicopy numbers. RNASeq results indicated that small regulatory RNAs such as CrcZ, RsmY and RgsA are common targets of RsmN and RsmA, whereas PhrS is a target of RsmN only. Other common RsmA and RsmN targets included transcriptional regulators, heat shock proteins, proteases, starvation response proteins, components of the denitrification pathway, outer membrane proteins required for pore formation, type III and type VI secretion system proteins and RsmA. Transcripts of heat shock proteins, the tss operon genes and rsmA were enriched by RsmN at 37°C but not at 34°C whereas the lasB transcript was enriched by RsmN at 34°C but not at 37°C. Based on the list of common targets of RsmA and RsmN and the results obtained from phenotypic assays, induction of the lytic Pf4 prophage, accumulation of alkyl quinolone or c-di-GMP signalling molecules, imbalanced redox state, carbon starvation, increased membrane permeability, and aggregation of misfolded proteins are suggested as possible mechanisms triggering the excessive autolysis of the rsmNind ΔrsmA mutant under uninducing conditions. The data gathered so far suggests that rsmN is differentially expressed, with increased RsmN activity at temperatures below 37°C in comparison with RsmA, and, RsmA and RsmN collectively contribute to the regulation of secondary metabolite production, motility and microcolony formation in P. aeruginosa

    Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN

    No full text
    Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In P. aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues

    Prevalence of ExoY activity in Pseudomonas aeruginosa reference panel strains and impact on cytotoxicity in epithelial cells

    No full text
    International audienceExoY is among the effectors that are injected by the type III secretion system (T3SS) of Pseudomonas aeruginosa into host cells. Inside eukaryotic cells, ExoY interacts with F-actin, which stimulates its potent nucleotidyl cyclase activity to produce cyclic nucleotide monophosphates (cNMPs). ExoY has broad substrate specificity with GTP as a preferential substrate in vitro. How ExoY contributes to the virulence of P. aeruginosa remains largely unknown. Here, we examined the prevalence of active ExoY among strains from the international P. aeruginosa reference panel, a collection of strains that includes environmental and clinical isolates, commonly used laboratory strains, and sequential clonal isolates from cystic fibrosis (CF) patients and thus represents the large diversity of this bacterial species. The ability to secrete active ExoY was determined by measuring the F-actin stimulated guanylate cyclase (GC) activity in bacterial culture supernatants. We found an overall ExoY activity prevalence of about 60% among the 40 examined strains with no significant difference between CF and non-CF isolates. In parallel, we used cellular infection models of human lung epithelial cells to compare the cytotoxic effects of isogenic reference strains expressing active ExoY or lacking the exoY gene. We found that P. aeruginosa strains lacking ExoY were in fact more cytotoxic to the epithelial cells than those secreting active ExoY. This suggests that under certain conditions, ExoY might partly alleviate the cytotoxic effects of other virulence factors of P. aeruginosa
    corecore