167 research outputs found

    B Lymphocytes as Targets of the Immunomodulatory Properties of Human Amniotic Mesenchymal Stromal Cells

    Get PDF
    Mesenchymal stromal cells (MSC) from the amniotic membrane of human term placenta (hAMSC), and the conditioned medium generated from their culture (CM-hAMSC) offer significant tools for their use in regenerative medicine mainly due to their immunomodulatory properties. Interestingly, hAMSC and their CM have been successfully exploited in preclinical disease models of inflammatory and autoimmune diseases where depletion or modulation of B cells have been indicated as an effective treatment, such as inflammatory bowel disease, lung fibrosis, would healing, collagen-induced arthritis, and multiple sclerosis. While the interactions between hAMSC or CM-hAMSC and T lymphocytes, monocytes, dendritic cells, and macrophages has been extensively explored, how they affect B lymphocytes remains unclear. Considering that B cells are key players in the adaptive immune response and are a central component of different diseases, in this study we investigated the in vitro properties of hAMSC and CM-hAMSC on B cells. We provide evidence that both hAMSC and CM-hAMSC strongly suppressed CpG-activated B-cell proliferation. Moreover, CM-hAMSC blocked B-cell differentiation, with an increase of the proportion of mature B cells, and a reduction of antibody secreting cell formation. We observed the strong inhibition of B cell terminal differentiation into CD138+ plasma cells, as further shown by a significant decrease of the expression of interferon regulatory factor 4 (IRF-4), PR/SET domain 1(PRDM1), and X-box binding protein 1 (XBP-1) genes. Our results point out that the mechanism by which CM-hAMSC impacts B cell proliferation and differentiation is mediated by secreted factors, and prostanoids are partially involved in these actions. Factors contained in the CM-hAMSC decreased the CpG-uptake sensors (CD205, CD14, and TLR9), suggesting that B cell stimulation was affected early on. CM-hAMSC also decreased the expression of interleukin-1 receptor-associated kinase (IRAK)-4, consequently inhibiting the entire CpG-induced downstream signaling pathway. Overall, these findings add insight into the mechanism of action of hAMSC and CM-hAMSC and are useful to better design their potential therapeutic application in B-cell mediated diseases

    The role of b cells in pe pathophysiology: A potential target for perinatal cell-based therapy?

    Get PDF
    The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton\u2019s jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE

    Hepatitis C virus genotypes and risk of cirrhosis in Southern Italy.

    Get PDF

    Emergence of a HER2-amplified clone during disease progression in an ALK-rearranged NSCLC patient treated with ALK-inhibitors: A case report

    Get PDF
    Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) are the standard treatment for advanced ALK-positive non-small cell lung cancer (NSCLC) allowing survivals up to 5 years. However, duration of responses is limited by the almost certain occurrence of drug resistance. Here, we report a case of a never smoker, 59-year-old female with metastatic ALK-positive adenocarcinoma, solid and signet ring patterns, who developed resistance to alectinib, a second-generation ALK-TKI, mediated by HER2 gene amplification. The patient received 22 months of crizotinib as first-line and subsequently 1-year of alectinib therapy. A study of resistance mechanism was performed with next generation sequencing (NGS) on tissue re-biopsy. A HER2-amplified emerging clone was identified by NGS in a liver metastasis and confirmed by fluorescent in situ hybridization (FISH) analysis. The resistant clone was detectable 2 months before disease progression in plasma cell-free DNA (cfDNA) using digital droplet PCR (ddPCR) copy number variation (CNV) assay and it was retrospectively traced in rare cells of the lung primary by FISH. To our best knowledge, this is first evidence of HER2 gene amplification as a resistance mechanism to ALK-TKI in a NSCLC. Future strategies against oncogene-addicted NSCLC might benefit of combined drug treatments, such as ALK and HER2 inhibition

    Polymorphisms of microsomal epoxyde hydrolase gene and severity of HCV-related liver disease.

    Get PDF

    Amniotic MSCs reduce pulmonary fibrosis by hampering lung B-cell recruitment, retention, and maturation

    Get PDF
    Growing evidence suggests a mechanistic link between inflammation and the development and progression of fibrotic processes. Mesenchymal stromal cells derived from the human amniotic membrane (hAMSCs), which display marked immunomodulatory properties, have been shown to reduce bleomycin-induced lung fibrosis in mice, possibly by creating a microenvironment able to limit the evolution of chronic inflammation to fibrosis. However, the ability of hAMSCs to modulate immune cells involved in bleomycin-induced pulmonary inflammation has yet to be elucidated. Herein, we conducted a longitudinal study of the effects of hAMSCs on alveolar and lung immune cell populations upon bleomycin challenge. Immune cells collected through bronchoalveolar lavage were examined by flow cytometry, and lung tissues were used to study gene expression of markers associated with different immune cell types. We observed that hAMSCs increased lung expression of T regulatory cell marker Foxp3, increased macrophage polarization toward an anti-inflammatory phenotype (M2), and reduced the antigen-presentation potential of macrophages and dendritic cells. For the first time, we demonstrate that hAMSCs markedly reduce pulmonary B-cell recruitment, retention, and maturation, and counteract the formation and expansion of intrapulmonary lymphoid aggregates. Thus, hAMSCs may hamper the self-maintaining inflammatory condition promoted by B cells that continuously act as antigen presenting cells for proximal T lymphocytes in injured lungs. By modulating B-cell response, hAMSCs may contribute to blunting of the chronicization of lung inflammatory processes with a consequent reduction of the progression of the fibrotic lesion

    Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma

    Get PDF
    Background: Trastuzumab has recently shown efficacy in the treatment of HER2-positive advanced gastric adenocarcinoma. Although antibody-based therapies target the metastatic disease, HER2 status is usually evaluated in the primary tumour because metastatic sites are rarely biopsied. The aim of this study was to compare HER2 status in primary and paired metastatic sites of gastric adenocarcinoma. Methods: The HER2 status was assessed by fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) in 72 secondary lesions of gastric adenocarcinoma and in the corresponding primary tumours. Results: Concordance of FISH results, evaluable in 68 primary and matched metastatic sites, was 98.5%. Concordance of IHC results, available in 39 of the 72 paired cases, was 94.9%. Only one case showed discordance between primary tumour and metastasis, being negative by both IHC and FISH in the primary and showing HER2 overexpression and amplification in the corresponding pancreatic lymph node metastasis. Conclusion: The high concordance observed between HER2 results obtained by both IHC and FISH on primary tumours and corresponding metastases suggests that in gastric cancer HER2 status is maintained in most cases unchanged during the metastatic process. Keywords: HER2, gastric cancer, FISH, immunohistochemistr

    Optimizing PD-L1 evaluation on cytological samples from advanced non-small-cell lung cancer

    Get PDF
    Aim: Programmed cell death-ligand 1 (PD-L1) predicts response to immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) patients. Most NSCLCs are diagnosed at an advanced stage and using minimally invasive diagnostic procedures that yield small biopsies or cytological samples. Methods: Cytological smears and paired histological samples from 52 advanced NSCLC patients were tested for PD-L1 expression by immunocyto/histochemistry (ICC/IHC) and for PD-L1 gene status by FISH. Results: PD-L1 was overexpressed in 9/52 (17%) cytological samples and in seven (13.5%) matched biopsies. The concordance between immunocytochemistry and IHC was 92.3% (48/52; p < 0.001). The concordance between PD-L1 gene status on cytology and histology was 69.2% (18/26; p < 0.001). No correlation between IHC and fluorescence in situ hybridization results was found. Conclusion: Our data support the feasibility and reliability of PD-L1 protein and PD-L1 gene assessment on direct cytological smears from NSCLC patients whenever histological sample are inadequate
    • …
    corecore