5 research outputs found

    Characterization of a surface membrane molecule expressed by natural killer cells in most inbred mouse strains: monoclonal antibody C9.1 identifies an allelic form of the 2B4 antigen

    No full text
    A newly generated monoclonal antibody (mAb C9.1) described in this study identifies a surface membrane molecule that is involved in the lytic programme of activated natural killer (NK) cells. This conclusion is based on the facts that, first, this antigen was expressed on the vast majority of surface immunoglobulin (sIg)− CD3− CD4− CD8− spleen lymphocytes, albeit it was also present on minor subsets of sIg+ B (≈7%) and CD3+ T (≈2%) lymphocytes; second, that all splenic NK activity was contained within the C9.1+ cell population, and was almost totally abolished by treatment of spleen cells with mAb C9.1 and complement; third, that mAb C9.1 was capable of increasing interleukin-2-cultured and in vivo polyinosinic:polycytidylic acid-activated, NK cell-mediated, antibody-redirected lysis, but not freshly isolated NK cell-mediated killing. Furthermore, the strain distribution of the C9.1 antigen was shown to be antithetical to that of the 2B4 antigen already described as a molecule associated with major histocompatibility complex-unrestricted killing mediated by activated NK cells. The gene encoding C9.1 antigen was linked to the Akp1 isozyme locus on chromosome 1 close to the 2B4 gene. Although C9.1 and 2B4 were monomeric glycoproteins of 78 000 MW and 66 000 MW, respectively, removal of N-linked sugars from both antigens by endoglycosidase F yielded identical protein backbones of 38 000 MW. Thus, all of these results suggest that mAb C9.1 recognizes an allelic form of the 2B4 antigen. However, the detection of mAb C9.1-reactive antigen on a minor subset of B cells may suggest a possible reactivity of mAb C9.1 with some product of other members of the 2B4 family genes

    Discovery of Entry Inhibitors for HIV-1 via a New De Novo Protein Design Framework

    No full text
    A new (to our knowledge) de novo design framework with a ranking metric based on approximate binding affinity calculations is introduced and applied to the discovery of what we believe are novel HIV-1 entry inhibitors. The framework consists of two stages: a sequence selection stage and a validation stage. The sequence selection stage produces a rank-ordered list of amino-acid sequences by solving an integer programming sequence selection model. The validation stage consists of fold specificity and approximate binding affinity calculations. The designed peptidic inhibitors are 12-amino-acids-long and target the hydrophobic core of gp41. A number of the best-predicted sequences were synthesized and their inhibition of HIV-1 was tested in cell culture. All peptides examined showed inhibitory activity when compared with no drug present, and the novel peptide sequences outperformed the native template sequence used for the design. The best sequence showed micromolar inhibition, which is a 3–15-fold improvement over the native sequence, depending on the donor. In addition, the best sequence equally inhibited wild-type and Enfuvirtide-resistant virus strains

    Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication

    No full text
    corecore