3,543 research outputs found
Secondary instabilities of hexagons: a bifurcation analysis of experimentally observed Faraday wave patterns
We examine three experimental observations of Faraday waves generated by
two-frequency forcing, in which a primary hexagonal pattern becomes unstable to
three different superlattice patterns. We use the symmetry-based approach
developed by Tse et al. to analyse the bifurcations involved in creating the
three new patterns. Each of the three examples reveals a different situation
that can arise in the theoretical analysis.Comment: 14 pages LaTeX, Birkhauser style, 5 figures, submitted to the
proceedings of the conference on Bifurcations, Symmetry and Patterns, held in
Porto, June 200
The Impact of Physical Activity on Depressed Mood in Older Seventh-day Adventists
Research has shown physical activity (PA) to result in a reduction in depressed mood. The effects have been examined for different age groups, however, it is unclear whether PA effects differ in older adults. A prospective cohort study (N = 6,463) examined duration and intensity of PA in relation to mood in the Biopsychosocial Religion and Health Study (BRHS). Depressed mood indices were expected to be predicted by lower levels of PA and individuals in younger age groups were expected to receive a greater reduction in depressed mood after PA than those in older age groups. Previous PA (minutes of vigorous PA per week) of all participants had a small protective effect against depressed mood 1-3 years later. A one hour daily increase in vigorous PA may result in a meaningful impact on depressive symptoms. PA was protective of depressed mood in participants falling within the oldest quartile but not the three younger quartiles. Age was also a significant predictor of later depressed mood in older adults but not in younger adults indicating PA may be more important in an older population who could be more at risk for depressed mood
Broken symmetries and pattern formation in two-frequency forced Faraday waves
We exploit the presence of approximate (broken) symmetries to obtain general
scaling laws governing the process of pattern formation in weakly damped
Faraday waves. Specifically, we consider a two-frequency forcing function and
trace the effects of time translation, time reversal and Hamiltonian structure
for three illustrative examples: hexagons, two-mode superlattices, and two-mode
rhomboids. By means of explicit parameter symmetries, we show how the size of
various three-wave resonant interactions depends on the frequency ratio m:n and
on the relative temporal phase of the two driving terms. These symmetry-based
predictions are verified for numerically calculated coefficients, and help
explain the results of recent experiments.Comment: 4 pages, 6 figure
Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control
For many years it was believed that an unstable periodic orbit with an odd
number of real Floquet multipliers greater than unity cannot be stabilized by
the time-delayed feedback control mechanism of Pyragus. A recent paper by
Fiedler et al uses the normal form of a subcritical Hopf bifurcation to give a
counterexample to this theorem. Using the Lorenz equations as an example, we
demonstrate that the stabilization mechanism identified by Fiedler et al for
the Hopf normal form can also apply to unstable periodic orbits created by
subcritical Hopf bifurcations in higher-dimensional dynamical systems. Our
analysis focuses on a particular codimension-two bifurcation that captures the
stabilization mechanism in the Hopf normal form example, and we show that the
same codimension-two bifurcation is present in the Lorenz equations with
appropriately chosen Pyragus-type time-delayed feedback. This example suggests
a possible strategy for choosing the feedback gain matrix in Pyragus control of
unstable periodic orbits that arise from a subcritical Hopf bifurcation of a
stable equilibrium. In particular, our choice of feedback gain matrix is
informed by the Fiedler et al example, and it works over a broad range of
parameters, despite the fact that a center-manifold reduction of the
higher-dimensional problem does not lead to their model problem.Comment: 21 pages, 8 figures, to appear in PR
Structural characterization of biocompatible reverse micelles using Small-Angle X-ray Scattering, 31P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy
The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri-n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: CeolĂn, Marcelo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones FisicoquĂmicas TeĂłricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquĂmicas TeĂłricas y Aplicadas; ArgentinaFil: Silber, Juana J.. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentin
Simultaneous IUE, EXOSAT and optical observations of the unusual AM Her type variable H058+608
Simultaneous observations of the AM Her type variable H0538+608 made with IUE, EXOSAT, and a 1.3 m ground based telescope, and subsequent optical spectrophotometry at high and low resolution are discussed. The X-ray and optical data show clear evidence of a 3.30 + or - 0.03 hr period. Three SWP spectra were taken outside of eclipse and during overlapping phase intervals. The UV spectra contain strong emission lines characteristic of this class of objects and a flat continuum which appears to be deficient, given the brightness of source at optical and X-ray wavelengths. There is evidence for intensity variations in emission lines, particularly C IV. The X-ray light curves for H0538+608 reveal behavior which may be related to irregularities in its accretion flow
JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response
Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling. Analysis of clonally derived JAK2V617F-positive erythroblasts from MPN patients also demonstrated impaired replication fork progression accompanied by increased levels of replication protein A (RPA)-containing foci. However, the associated intra-S checkpoint response was impaired in erythroblasts from polycythemia vera (PV) patients, but not in those from essential thrombocythemia (ET) patients. Moreover, inhibition of p53 in PV erythroblasts resulted in more gamma-H2Ax (γ-H2Ax)–marked double-stranded breaks compared with in like-treated ET erythroblasts, suggesting the defective intra-S checkpoint function seen in PV increases DNA damage in the context of attenuated p53 signaling. These results demonstrate oncogene-induced impairment of replication fork progression in primary cells from MPN patients, reveal unexpected disease-restricted differences in activation of the intra-S checkpoint, and have potential implications for the clonal evolution of malignancies
Bifurcations of periodic orbits with spatio-temporal symmetries
Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems
Notch pathway repression by vestigial is required to promote indirect flight muscle differentiation in Drosophila melanogaster
AbstractDrosophila dorsal longitudinal muscles develop during metamorphosis by fusion of myoblasts with larval templates. It has been shown that both vestigial and Notch are crucial for correct formation of these muscles. We investigated the relationship between vestigial and the Notch pathway during this process. Using Enhancer of Split Region Transcript m6 gene expression as a reporter of Notch pathway activity, we were able to demonstrate that this pathway is only active in myoblasts. Moreover, close examination of the cellular location of several of the main actors of the N pathway (Notch, Delta, neuralized, Serrate, Mind bomb1 and fringe) during dorsal longitudinal muscle development enabled us to find that Notch receptor can play multiple roles in adult myogenesis. We report that the locations of the two Notch ligands (Delta and Serrate) are different. Interestingly, we found that fringe, which encodes a glycosyltransferase that modifies the affinity of the Notch receptor for its ligands, is expressed in muscle fibers and in a subset of myoblasts. In addition, we demonstrate that fringe expression is essential for Notch pathway inhibition and muscle differentiation. Lastly, we report that, in vestigial mutants, fringe expression is lost, and when fringe is overexpressed, a significant rescue of indirect flight muscle degeneration is obtained. Altogether, our data show that a vestigial-differentiating function is achieved through the inhibition of the Notch pathway
- …