2,754 research outputs found
Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm
We investigate how the total radio luminosity of AGN-powered radio sources
depends on their accretion luminosity and the central black hole mass. We find
that AGNs form two distinct and well separated sequences on the radio-loudness
- Eddington-ratio plane. We argue that these sequences mark the real upper
bounds of radio-loudness of two distinct populations of AGNs: those hosted
respectively by elliptical and disk galaxies. Both sequences show the same
dependence of the radio-loudness on the Eddington ratio (an increase with
decreasing Eddington ratio), which suggests that another parameter in addition
to the accretion rate must play a role in determining the jet production
efficiency in active galactic nuclei, and that this parameter is related to
properties of the host galaxy. The revealed host-related radio dichotomy breaks
down at high accretion rates where the dominant fraction of luminous quasars
hosted by elliptical galaxies is radio quiet. We argue that the huge difference
between the radio-loudness reachable by AGNs in disc and elliptical galaxies
can be explained by the scenario according to which the spin of a black hole
determines the outflow's power, and central black holes can reach large spins
only in early type galaxies (following major mergers), and not (in a
statistical sense) in spiral galaxies.Comment: 7 pages, 4 figures included. Proceedings of the Workshop
`Extragalactic Jets: Theory and Observation from Radio to Gamma Ray',
Girdwood, May 200
QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs
A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails
Strategies in crowd and crowd structure
In an emergency situation, imitation of strategies of neighbours can lead to
an order-disorder phase transition, where spatial clusters of pedestrians adopt
the same strategy. We assume that there are two strategies, cooperating and
competitive, which correspond to a smaller or larger desired velocity. The
results of our simulations within the Social Force Model indicate that the
ordered phase can be detected as an increase of spatial order of positions of
the pedestrians in the crowd.Comment: 5 pages, 7 figure
On the spin paradigm and the radio dichotomy of quasars
We investigate whether models based on the assumption that jets in quasars
are powered by rotating black holes can explain the observed radio dichotomy of
quasars. We show that in terms of the ``spin paradigm'' models, radio-loud
quasars could be objects in which the black hole's rotation rate corresponds to
an equilibrium between spin-up by accretion and spin-down by the
Blandford-Znajek mechanism. Radio-quiet quasars could be hosting black holes
with an average spin much smaller than the equilibrium one. We discuss possible
accretion scenarios which can lead to such a bimodal distribution of black hole
spins.Comment: 8 pages, 7 figures (included), LaTeX, uses epsf.sty and mn.sty
(included), MNRAS submitte
Measurement of Electron Trapping in the CESR Storage Ring
The buildup of low-energy electrons has been shown to affect the performance
of a wide variety of particle accelerators. Of particular concern is the
persistence of the cloud between beam bunch passages, which can impose
limitations on the stability of operation at high beam current. We have
obtained measurements of long-lived electron clouds trapped in the field of a
quadrupole magnet in a positron storage ring, with lifetimes much longer than
the revolution period. Based on modeling, we estimate that about 7% of the
electrons in the cloud generated by a 20-bunch train of 5.3 GeV positrons with
16-ns spacing and population survive longer than 2.3 s in a
quadrupole field of gradient 7.4 T/m. We have observed a non-monotonic
dependence of the trapping effect on the bunch spacing. The effect of a witness
bunch on the measured signal provides direct evidence for the existence of
trapped electrons. The witness bunch is also observed to clear the cloud,
demonstrating its effectiveness as a mitigation technique.Comment: 6 pages, 9 figures, 28 citation
Riesz transform characterization of Hardy spaces associated with Schr\"odinger operators with compactly supported potentials
Let L=-\Delta+V be a Schr\"odinger operator on R^d, d\geq 3. We assume that V
is a nonnegative, compactly supported potential that belongs to L^p(R^d), for
some p>d/2. Let K_t be the semigroup generated by -L. We say that an
L^1(R^d)-function f belongs to the Hardy space H_L^1 associated with L if
sup_{t>0} |K_t f| belongs to L^1(R^d). We prove that f\in H_L^1 if and only if
R_j f \in L^1(R^d) for j=1,...,d, where R_j= \frac{d}{dx_j} L^{-1/2} are the
Riesz transforms associated with L.Comment: 6 page
Hard x-ray photon-in-photon-out spectroscopy with lifetime resolution – of XAS, XES, RIXSS and HERFD
Spectroscopic techniques that aim to resolve the electronic configuration and local coordination of a central
atom by detecting inner-shell radiative decays following photoexcitation using hard X-rays are presented. The
experimental setup requires an X-ray spectrometer based on perfect crystal Bragg optics. The possibilities arising from
non-resonant (X-Ray Emission Spectroscopy - XES) and resonant excitation (Resonant Inelastic X-Ray Scattering
Spectroscopy – RIXSS, High-Energy-Resolution Fluorescence Detected (HERFD) XAS) are discussed when the
instrumental energy broadenings of the primary (beamline) monochromator and the crystal spectrometer for x-ray
emission detection are on the order of the core hole lifetimes of the intermediate and final electronic states. The small
energy bandwidth in the emission detection yields line-sharpened absorption features. In transition metal compounds,
electron-electron interactions as well as orbital splittings and fractional population can be revealed. Combination with
EXAFS spectroscopy enables to extent the k-range beyond unwanted absorption edges in the sample that limit the
EXAFS range in conventional absorption spectroscopy
- …