Let L=-\Delta+V be a Schr\"odinger operator on R^d, d\geq 3. We assume that V
is a nonnegative, compactly supported potential that belongs to L^p(R^d), for
some p>d/2. Let K_t be the semigroup generated by -L. We say that an
L^1(R^d)-function f belongs to the Hardy space H_L^1 associated with L if
sup_{t>0} |K_t f| belongs to L^1(R^d). We prove that f\in H_L^1 if and only if
R_j f \in L^1(R^d) for j=1,...,d, where R_j= \frac{d}{dx_j} L^{-1/2} are the
Riesz transforms associated with L.Comment: 6 page