137 research outputs found

    Accuracy of Protein-Protein Binding Sites in High-Throughput Template-Based Modeling

    Get PDF
    The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∌50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes

    Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.</p> <p>Results</p> <p>We propose a new idea to construct an integrative profile for each residue in a protein by combining its hydrophobic and evolutionary information. A support vector machine (SVM) ensemble is then developed, where SVMs train on different pairs of positive (interface sites) and negative (non-interface sites) subsets. The subsets having roughly the same sizes are grouped in the order of accessible surface area change before and after complexation. A self-organizing map (SOM) technique is applied to group similar input vectors to make more accurate the identification of interface residues. An ensemble of ten-SVMs achieves an MCC improvement by around 8% and F1 improvement by around 9% over that of three-SVMs. As expected, SVM ensembles constantly perform better than individual SVMs. In addition, the model by the integrative profiles outperforms that based on the sequence profile or the hydropathy scale alone. As our method uses a small number of features to encode the input vectors, our model is simpler, faster and more accurate than the existing methods.</p> <p>Conclusions</p> <p>The integrative profile by combining hydrophobic and evolutionary information contributes most to the protein-protein interaction prediction. Results show that evolutionary context of residue with respect to hydrophobicity makes better the identification of protein interface residues. In addition, the ensemble of SVM classifiers improves the prediction performance.</p> <p>Availability</p> <p>Datasets and software are available at <url>http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm</url>.</p

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    SummaryThe Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a transcriptional signature associated with survival duration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that homologous recombination is defective in about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian cancer pathophysiology

    Phase I study of pegylated liposomal doxorubicin and the multidrug-resistance modulator, valspodar

    Get PDF
    Valspodar, a P-glycoprotein modulator, affects pharmacokinetics of doxorubicin when administered in combination, resulting in doxorubicin dose reduction. In animal models, valspodar has minimal interaction with pegylated liposomal doxorubicin (PEG-LD). To determine any pharmacokinetic interaction in humans, we designed a study to determine maximum tolerated dose, dose-limiting toxicity (DLT), and pharmacokinetics of total doxorubicin, in PEG-LD and valspodar combination therapy in patients with advanced malignancies. Patients received PEG-LD 20–25 mg m−2 intravenously over 1 h for cycle one. In subsequent 2-week cycles, valspodar was administered as 72 h continuous intravenous infusion with PEG-LD beginning at 8 mg m−2 and escalated in an accelerated titration design to 25 mg m−2. Pharmacokinetic data were collected with and without valspodar. A total of 14 patients completed at least two cycles of therapy. No DLTs were observed in six patients treated at the highest level of PEG-LD 25 mg m−2. The most common toxicities were fatigue, nausea, vomiting, mucositis, palmar plantar erythrodysesthesia, diarrhoea, and ataxia. Partial responses were observed in patients with breast and ovarian carcinoma. The mean (range) total doxorubicin clearance decreased from 27 (10–73) ml h−1 m−2 in cycle 1 to 18 (3–37) ml h−1 m−2 with the addition of valspodar in cycle 2 (P=0.009). Treatment with PEG-LD 25 mg m−2 in combination with valspodar results in a moderate prolongation of total doxorubicin clearance and half-life but did not increase the toxicity of this agent

    Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases

    Get PDF
    Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≄3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≄100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≄3 years, if baseline LDL-C is ≄100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
    • 

    corecore