8 research outputs found

    Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    No full text
    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jozef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology

    C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application

    No full text
    Anodization was used to obtain a nanotubular TiO2 photoanode on F-SnO2 glass. Subsequent annealing in the CH4 atmosphere promoted the C-doping and improved the crystallinity of the TiO2 nanotubes. The pulsed laser deposition was applied to cover the nanotubes with Bi2O3, serving as a hole transport material. X-ray photoelectron spectroscopy analyses of the doped samples reveal a shift in the valence band's maximum position towards lower binding energy as compared to those observed for the undoped samples (annealed in the air). The doping positively affects the absorption by shifting the absorption edge to 567 nm. I-V measurements under illumination show that the C-doping of TiO2 increases the current density following the absorbance results. The highest open circuit voltage was reached for the samples with the 300 degrees C-deposited Bi2O3 layer, pointing to better quality of the p-n junction, hence of the contact between Bi2O3 and TiO2. This in situ annealing provided the formation of close contact between Bi2O3 and TiO2, which enabled a faster charge transport as compared to the contact obtained with no annealing or even with post annealing

    Post-mortem analysis of tungsten plasma facing components in tokamaks: Raman microscopy measurements on compact, porous oxide and nitride films and nanoparticles

    No full text
    International audienceRaman microscopy is one of the methods that could be used for future post-mortem analyses of samples extracted from ITER plasma facing. This study shows that this technique is useful for studying tungsten-based materials containing impurities including oxides and nitrides. Here, we apply pulsed laser deposition and DC argon glow discharges to produce tungsten-containing synthetic films (compact, porous) and nanoparticles and investigate the influence of their morphology on the measured Raman spectra. The amounts of oxygen and/or nitrogen in the films are also investigated. Comparative data are obtained by X-ray Photoelectrons Spectroscopy, Atomic Force Microscopy, Electron Microscopies (Scanning and Transmission), Energy Dispersive X-ray spectroscopy, Time-of-Flight Elastic Recoil Detection Analysis. The power density of the laser beam used to perform Raman microscopy is varied by up to 4 orders of magnitude (0.01-20 mW/μm 2) to investigate thermal stability of films and nanoparticles. As a first result, we give evidence that Raman microscopy is sensitive enough to detect surface native oxides. Secondly, more tungsten oxides are detected in porous materials and nanoparticles than in compact films, and the intensities of the Raman band correlate to their oxygen content. Thirdly, thermal stability of these films (i.e. structural and chemical modification under laser heating) is poor when compact films contain a sufficiently large amount of nitrogen. This finding suggests that nitrogen can be substituted by oxygen during Raman laser induced heating occurring in ambient air. Finally, our methodology can be used to rapidly characterize morphology and chemistry of the samples analyzed, and also to create oxides at the micrometer scale. keywords: PLD, Raman spectroscopy, tungsten oxide, tungsten nitride, plasma wall interaction, laser heating, post-mortem analysis
    corecore