223 research outputs found
Susceptibility to Predation Affects Trait-Mediated Indirect Interactions by Reversing Interspecific Competition
Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions
In vitro measurement of temperature changes during implantation of cemented glenoid components
Background and purpose It is unclear whether the increase in temperature during cement curing may cause osteonecrosis, leading to loosening of the glenoid component in shoulder arthroplasty. We therefore analyzed the temperature during implantation of cemented glenoid implants
Sex peptide receptor-regulated polyandry mediates the balance of pre- and post-copulatory sexual selection in Drosophila
Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophil
Breeding productivity, nest-site selection and conservation needs of the endemic Turkestan Ground-jay Podoces panderi
The Turkestan Ground-jay Podoces panderi, a corvid endemic to the deserts of Central Asia, is both understudied and under-protected. Using standardised nest-monitoring protocols and nest cameras, we estimated its breeding productivity for the first time as 0.586 fledglings per nesting attempt (inter-quartile range, IQR 0.413‒0.734), strongly constrained by a diverse set of predator species (accounting for 88% of failures), supporting the broad pattern that a wide spectrum of nest predators operate in arid environments. The probability of nest success for the 35 days from the start of incubation to fledging was low, 0.186 ± 0.06 se (N = 37), with no influence of season date, nest height or nest shrub species. However, pervasive shrub harvest severely limited availability of taller shrubs for nest-site selection, and thus our ability to detect any effect of height on nest survival. Mean clutch size was 4.8 ± 0.8 sd while hatching probability of an egg from a clutch surviving incubation was 0.800 ± 0.050 se and fledging probability was 0.824 ± 0.093 se for individual chicks in successful nests (i.e. that fledged one or more chicks). Two shrub genera, saxaul Haloxylon spp. and Calligonum spp., were used for nesting more frequently than expected (χ152 = 784.02, P < 0.001), highlighting their importance to breeding habitat suitability. This near-sole reliance on these taller shrub genera, both targeted for illegal cutting, indicates that habitat degradation may lead to increased predation and declines in productivity. Habitat conservation is, therefore, likely to be the most important management strategy for the species and other components of desert systems, as management of so diverse a set of nest predators would be both impractical and inappropriate
Boldness Predicts Social Status in Zebrafish (Danio rerio)
This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance
Recommended from our members
Intermediate predator naïveté and sex-skewed vulnerability predict the impact of an invasive higher predator
The spread of invasive species continues to reduce biodiversity across all regions and habitat types globally. However, invader impact prediction can be nebulous, and approaches often fail to integrate coupled direct and indirect invader effects. Here, we examine the ecological impacts of an invasive higher predator on lower trophic groups, further developing methodologies to more holistically quantify invader impact. We employ functional response (FR, resource use under different densities) and prey switching experiments to examine the trait- and density-mediated impacts of the invasive mosquitofish Gambusia affinis on an endemic intermediate predator Lovenula raynerae (Copepoda). Lovenula raynerae effectively consumed larval mosquitoes, but was naïve to mosquitofish cues, with attack rates and handling times of the intermediate predator unaffected by mosquitofish cue-treated water. Mosquitofish did not switch between male and female prey, consistently displaying a strong preference for female copepods. We thus demonstrate a lack of risk-reduction activity in the presence of invasive fish by L. raynerae and, in turn, high susceptibility of such intermediate trophic groups to invader impact. Further, we show that mosquitofish demonstrate sex-skewed predator selectivity towards intermediate predators of mosquito larvae, which may affect predator population demographics and, perversely, increase disease vector proliferations. We advocate the utility of FRs and prey switching combined to holistically quantify invasive species impact potential on native organisms at multiple trophic levels
Diel and seasonal patterns in activity and home range size of green turtles on their foraging grounds revealed by extended Fastloc-GPS tracking
An animal’s home range is driven by a range of factors including top-down (predation risk) and bottom-up (habitat quality) processes, which often vary in both space and time. We assessed the role of these processes in driving spatiotemporal patterns in the home range of the green turtle (Chelonia mydas), an important marine megaherbivore. We satellite tracked adult green turtles using Fastloc-GPS telemetry in the Chagos Archipelago and tracked their fine-scale movement in different foraging areas in the Indian Ocean. Using this extensive data set (5,081 locations over 1,675 tracking days for 8 individuals) we showed that green turtles exhibit both diel and seasonal patterns in activity and home range size. At night, turtles had smaller home ranges and lower activity levels, suggesting they were resting. In the daytime, home ranges were larger and activity levels higher, indicating that turtles were actively feeding. The transit distance between diurnal and nocturnal sites varied considerably between individuals. Further, some turtles changed resting and foraging sites seasonally. These structured movements indicate that turtles had a good understanding of their foraging grounds in regards to suitable areas for foraging and sheltered areas for resting. The clear diel patterns and the restricted size of nocturnal sites could be caused by spatiotemporal variations in predation risk, although other factors (e.g. depth, tides and currents) could also be important. The diurnal and seasonal pattern in home range sizes could similarly be driven by spatiotemporal variations in habitat (e.g. seagrass or algae) quality, although this could not be confirmed
- …