59 research outputs found

    Thromboembolism and bleeding in systemic amyloidosis: a review

    Get PDF
    The assessment of both thromboembolic and haemorrhagic risks and their management in systemic amyloidosis have been poorly emphasized so far. This narrative review summarizes main evidence from literature with clinical perspective. The rate of thromboembolic events is as high as 5–10% amyloidosis patients, at least in patients with cardiac involvement, with deleterious impact on prognosis. The most known pro-thrombotic factors are heart failure, atrial fibrillation, and atrial myopathy. Atrial fibrillation could occur in 20% to 75% of systemic amyloidosis patients. Cardiac thrombi are frequently observed in patients, particularly in immunoglobulin light chains (AL) amyloidosis, up to 30%, and it is advised to look for them systematically before cardioversion. In AL amyloidosis, nephrotic syndrome and the use of immunomodulatory drugs also favour thrombosis. On the other hand, the bleeding risk increases because of frequent amyloid digestive involvement as well as factor X deficiency, renal failure, and increased risk of dysautonomia-related fall

    International Council for Standardization in Haematology Recommendations for Hemostasis Critical Values, Tests, and Reporting

    Get PDF
    This guidance document was prepared on behalf of the International Council for Standardization in Haematology (ICSH), the aim of which is to provide hemostasis-related guidance documents for clinical laboratories. The current ICSH document was developed by an ad hoc committee, comprising an international collection of both clinical and laboratory experts. The purpose of this ICSH document is to provide laboratory guidance for (1) identifying hemostasis (coagulation) tests that have potential patient risk based on analysis, test result, and patient presentations, (2) critical result thresholds, (3) acceptable reporting and documenting mechanisms, and (4) developing laboratory policies. The basis for these recommendations was derived from published data, expert opinion, and good laboratory practice. The committee realizes that regional and local regulations, institutional stakeholders (e.g., physicians, laboratory personnel, hospital managers), and patient types (e.g., adults, pediatric, surgical) will be additional confounders for a given laboratory in generating a critical test list, critical value thresholds, and policy. Nevertheless, we expect this guidance document will be helpful as a framework for local practice. © 2020 BMJ Publishing Group. All rights reserved

    Toxic iron species in lower-risk myelodysplastic syndrome patients:course of disease and effects on outcome

    Get PDF

    2021 Update of the International Council for Standardization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants

    Get PDF
    International audienceIn 2018, the International Council for Standardization in Haematology (ICSH) published a consensus document providing guidance for laboratories on measuring direct oral anticoagulants (DOACs). Since that publication, several significant changes related to DOACs have occurred, including the approval of a new DOAC by the Food and Drug Administration, betrixaban, and a specific DOAC reversal agent intended for use when the reversal of anticoagulation with apixaban or rivaroxaban is needed due to life-threatening or uncontrolled bleeding, andexanet alfa. In addition, this ICSH Working Party recognized areas where additional information was warranted, including patient population considerations and updates in point-of-care testing. The information in this manuscript supplements our previous ICSH DOAC laboratory guidance document. The recommendations provided are based on (1) information from peer-reviewed publications about laboratory measurement of DOACs, (2) contributing author's personal experience/expert opinion and (3) good laboratory practice

    Dosing Low Molecular Weight Heparins in Kidney Disease

    No full text

    Genetic Engineering by DNA Recombineering

    No full text
    Recombineering inserts PCR products into DNA using homologous recombination. A pair of short homology arms (50 base pairs) on the ends of a PCR cassette target the cassette to its intended location. These homology arms can be easily introduced as 5' primer overhangs during the PCR reaction. The flexibility to choose almost any pair of homology arms enables the precise modification of virtually any DNA for purposes of sequence deletion, replacement, insertion, or point mutation. Recombineering often offers significant advantages relative to previous homologous recombination methods that require the construction of cassettes with large homology arms, and relative to traditional cloning methods that become intractable for large plasmids or DNA sequences. However, the tremendous number of variables, options, and pitfalls that can be encountered when designing and performing a recombineering protocol for the first time introduce barriers that can make recombineering a challenging technique for new users to adopt. This article focuses on three recombineering protocols we have found to be particularly robust, providing a detailed guide for choosing the simplest recombineering method for a given application and for performing and troubleshooting experiments.NIH Director’s New Innovator Award (Grant 1DP2GM119162)NIAMS (Grant R01AR071443)National Science Foundation Graduate Research Fellowships (Grant No. 1122374
    corecore