39 research outputs found

    Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout

    Get PDF
    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior

    Practice improvement requires more than guidelines and quality measures.

    No full text
    Increasing emphasis on improving health care quality has led to a variety of programs that require neurologists to be familiar with the concept of systematic quality improvement. While they vary in extent, these quality improvement programs and their attendant costs now have implications for physician payment and certification. In response to these factors, the American Academy of Neurology is establishing a clinical quality data registry. This article reviews evidence demonstrating the ability of quality improvement initiatives to improve care, the role of clinical quality data registries in the identification and mitigation of gaps in care, and the principles to be considered in development of registry-based quality improvement programs. It addresses the key question: Is the effort worthwhile

    Introducing the Axon Registry: An opportunity to improve quality of neurologic care.

    No full text
    Clinical quality data registries are increasingly popular tools used by providers to improve the quality of clinical care and satisfy growing numbers of regulatory and reporting requirements. Specialty societies use registries to provide value to their members and guide improvements in care at the population level. In this article, we outline the rationale, structure, function, and challenges related to the American Academy of Neurology\u27s development of its own clinical quality data registry: the Axon Registry

    Statistical behavior of foreshock Langmuir waves observed by the Cluster wideband data plasma wave receiver

    No full text
    We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD) Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics

    Statistical and superposed epoch study of dipolarization events using data from Wind perigee passes

    Get PDF
    From 1995 to 2000, the Wind spacecraft spent over 500h in the magnetotail, much of it within ~2x104km of the predicted location of the neutral sheet. Wind passed through the near magnetotail at distances of -15 RE&lt;X GSM&lt;-6 RE on 35 occasions. Another 10 passes took place at distances of -30 RE&lt;X GSM&lt;-15 RE. We identified 65 dipolarization events in the Wind magnetic field data set between Y GSM~-16 and +16 RE based upon our requirements that the magnetic field inclination had to change by more than 15&deg;, the maximum inclination angle had to be greater than 20&deg;, and the inclination angle had to increase by a factor of at least 1.5. Most of the dipolarization events occurred in the pre-midnight region of the magnetotail and were accompanied by earthward flows with speeds greater than 100km/s. The properties of the dipolarization events did not depend upon the Y GSM position. However, they did vary with the distance to the neutral sheet. Isolated dipolarization events, defined as occurring more than 20min apart, were characterized by a decrease in Bx GSM and BTOTAL, and an increase in Bz GSM and the magnetic field inclination. Dipolarizations that occurred as part of a series of small dipolarizations spaced less than 20min apart were characterized by a transient increase in Bz GSM and the magnetic field inclination, but no significant change in Bx GSM and BTOTAL. The events consisting of a series of small dipolarizations occurred predominantly near midnight. We interpret these results in terms of two different modes of magnetotail convection: 1) a classical substorm pattern featuring storage of magnetic energy in the tail lobes which is explosively released at onset, and 2) a directly driven process
    corecore